#### STRUCTURES OF ORGANO-TRANSITION METAL COMPLEXES

ANNUAL SURVEY COVERING THE YEAR 1975\*

## Michael I. Bruce

Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia, 5001.

### INTRODUCTION

This survey will follow the new pattern adopted last year, namely two sections comprising a collection of briefly annotated diagrams ordered according to structural type, and a molecular formula index of structure determinations published during the year. During 1975, some 310 structures of organo-transition metal complexes were determined by diffraction methods, a slight reduction in the 1974 total.

In addition to conventional organometallics, i.e. those compounds containing at least one metal-carbon bond (apart from cyanides), we have also summarised data pertaining to other complexes of interest to many organometallic chemists. These include hydride and boron hydride derivatives, nitrosyls, aryldiazo, aryldiimine and related complexes, dinitrogen and binary metal-tertiary phosphine complexes.

REVIEWS AND OTHER PAPERS OF GENERAL STRUCTURAL INTEREST

The second volume of the Chemical Society's Specialist Periodical Report Molecular Structure by Diffraction Methods has been published [1], with a format that closely follows that of the first volume. This

Annual survey 1974; M.I. Bruce, J. Organometallic Chem., 115(1976)17-176.

#### References p. 132

survey covers the period April 1972 - March 1973 (for X-ray studies), and to August (neutron diffraction) or mid-autumn 1973 (electron diffraction). Further volumes in the *Molecular Structures and Dimensions* series [2] take the bibliography to the first third of 1974.

A paper on correlations between angular deformations induced in the benzene ring by substitution of a hydrogen atom with a second-row element and Pauling electronegativity of the substituent includes a consideration of structural data for several metal carbonyl complexes containing appropriate ligands [3].

Non-parameterised molecular orbital calculations of ligand-bridged  $Fe_2(CO)_6X_2$ -type dimers containing metal-metal interactions make extensive use of the structural data which is available for a wide range of these complexes [4]. Comparative calculations indicate that variation of the bridging ligands does not markedly affect the Fe-Fe interaction. The HOMO in the neutral complexes is similar to the classical "bent" Fe-Fe bond, with the LUMO being its antibonding counterpart. Addition of electrons to give mono- and dianions  $[Fe_2(CO)_6(PR_2)_2]^{n-}$  (n = 1 or 2) results in net one- and no-electron Fe-Fe bonds, respectively.

Single crystal EPR studies on  $V(S_5)(C_5H_5)_2$  doped in the lattice of the titanium complex are claimed [5] to give the coup-de-grace to the Ballhausen-Dahl theory [6] of bonding in bent bis( $n^5$ -cyclopentadienyl)metal complexes, and indicate that the later Alcock model [7] also is not an adequate interpretation. Instead, the quantitative results show that the unpaired electron resides in an MO which is mainly  $3d_{z^2}$ , with a small amount of  $3d_{x^2-y^2}$ , but no 4s, character. These results were supported by crystal structures of MCl<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>Me)<sub>2</sub> (M = Ti and V) and EPR studies on the vanadium compound [8]. These studies are followed by non-parameterised MO calculations on several  $d^0$ ,  $d^1$  and  $d^2$  ML<sub>2</sub>(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> molecules, and the results, which agree with EPR and photo-electron spectral measurements, now provide

a sound theoretical basis for the interpretation and rationalisation of the various structural features [9].

A structural study of the two forms of RhCl(PPh<sub>3</sub>)<sub>3</sub> (red and orange) has shown that in the latter, an *ortho* hydrogen atom (Rh-H, *ca*. 2.84Å) is approximately *trans* to the chlorine atom [10]. In the red isomer, a different *ortho* hydrogen is close to the metal atom (Rh-H, 2.77Å). All but one of the phenyl rings have similar orientations with respect to the mean coordination planes in both allotropes. Some discussion of contribution of non-primary valence interactions in achieving an 18-electron configuration is given, together with speculation regarding the role of the intermediate complex RhCl(PPh<sub>3</sub>)<sub>2</sub>. A trigonal bipyramidal arrangement (with two *ortho*hydrogens as the two "extra" ligands) may be envisaged, with ready replacement by more conventional ligand electron pairs in the formation of RhCl(L)(PPh<sub>3</sub>)<sub>2</sub> or the dimeric [RhCl(PPh<sub>3</sub>)<sub>2</sub>]<sub>2</sub>.

It has been pointed out that the stereochemistry of the iron atom in 29 FeY(CO)<sub>2</sub>( $n-C_5H_5$ ) complexes is remarkably close to octahedral, and that there may be a certain rigidity in this arrangement [11]. If this is so, tautomerism in [Fe(CO)<sub>2</sub>( $n-C_5H_5$ )]<sub>2</sub> and related complexes must involve simultaneous making or breaking of two CO-bridge systems. This observation provides an explanation for the mechanism used to rationalise NMR results.

Initial structure determinations of rhodium and iridium dioxygen complexes apparently showed a correlation between the 0-0 bond length and the degree of reversibility of uptake of dioxygen by the complexes. Structures of a series of related dioxygen salts, reported during the year [12], including a redetermination of the structure of  $[Ir(O_2)(dppe)_2]PF_6$ [reported<sup>13</sup> 0-0 1.625(23)Å] gave an 0-0 bond length of 1.52(1)Å for this complex, and indicated that systematic errors in the earlier intensity data, resulting from crystal decomposition, resulted in errors in atom coordinates [13]. The new results suggest that the 0-0 bond lengths

References p. 132

probably lie in the range 1.45 - 1.50A, with peroxide character, and that the deductions concerning 0-0 bond length and the bond between  $0_2$  and the metal are not tenable.

An important paper, describing the structure of  $Os(NO)_2(PPh_3)_2$ includes a full discussion of recent results on four-coordinate nitrosyl complexes, and eight rules of thumb for predicting the general coordination geometries in many nitrosyl complexes [14]. Although not inherently fundamental in nature, some simple assumptions concerning the NO group enable the generalisations to be understood. In contrast to the situation described in an earlier survey [15] and elsewhere [16], it would appear that this paper contains criteria which will be useful in predicting the stereochemistries and properties of nitrosyl compounds.

A paper comparing the nitrosyl and aryldiazo complexes RuLCl<sub>3</sub>(PPh<sub>3</sub>)<sub>2</sub> (L = NO or N<sub>2</sub>tol-*p*) contains a detailed discussion on the N-O and N-N stretching frequencies found in complexes containing these isoelectronic ligands [17]. A number of empirical "corrections" applied to the observed v(NO) frequencies result in the corrected frequencies falling into two groups, above and below 1606 - 1611 cm<sup>-1</sup>. Bent nitrosyls fall in the lower range, while linear NO groups fall in the higher range. Application of aryldiazo compounds leads to two groups of v(NN) frequencies lying above and below 1530 - 1550 cm<sup>-1</sup>, arising from singly- and doubly-bent aryldiazo ligands, respectively.

A note discusses methods of twist angle calculations with reference to a number of complexes containing two approximately parallel faces (including three ferrocene derivatives). Requirements for complete descriptions of distortions in these molecules are summarised [18].

# TRENDS IN 1975

The increasing use of X-ray diffraction as a routine analytical

tool is evident, as is the tendency to examine trends and relationships in more or less extensive series of compounds. Examples of the latter include  $MMe_2(ind)_2$  (M = Ti, Zr, Hf), the isoelectronic nitrosyls  $M(NO)_2(PPh_3)_2$  (M = Fe, Ru, Os, Co<sup>+</sup>, Rh<sup>+</sup>, Ir<sup>+</sup>), and dioxygen complexes of rhodium and iridium (mentioned above). The rapid progress in several areas in which X-ray crystallographic structure determination is a prime necessity, such as metal cluster chemistry, metallocarborane reactions, and polynuclear hydrocarbon complexes of the Fe, Ru and Os carbonyls, is self-evident. Of just over 300 organometallic structures reported, no less than 40 originated from the Bristol group.

Noteworthy complexes and unusual ligands confirmed or revealed by structural determinations during the year, and detailed in the succeeding sections include: the first titanium- and copper carbonyl derivatives, the first selenocarbonyl group in RuCl<sub>2</sub>(CO)(CSe)(PPh<sub>3</sub>)<sub>2</sub>, phenylphosphinidene and -arsinidene complexes [Mn(CO)<sub>3</sub>(C<sub>5</sub>H<sub>5</sub>)]<sub>2</sub>PPh and [Cr(CO)<sub>5</sub>]<sub>2</sub>AsPh, the metalloacetylacetonato complex Al[Mn(CO)<sub>4</sub>(COMe)<sub>2</sub>]<sub>3</sub>, and the unusual adduct from tetracyanoquinodimethan and Pt(C<sub>2</sub>Me)<sub>2</sub>(PMe<sub>3</sub>)<sub>2</sub>, containing the PtC[:C(CN)<sub>2</sub>]CMe[:C<sub>6</sub>H<sub>4</sub>C(CN)<sub>2</sub>] group. Other interesting derivatives are the first unsubstituted methylene complex, Ta(CH<sub>2</sub>)Me(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>, tris-olefin complexes of platinum, and allyl and cyclopentadienyl groups bridging two palladium atoms, while reactions of hexafluorobut-2-yne with a wide variety of complexes have led to several new ligand types being derived from this versatile precursor.

## ELECTRON DIFFRACTION RESULTS

A survey of organometallic compounds studied by gas-phase electron diffraction discusses only bis(cyclopentadienyl)metal derivatives in the section on transition metal derivatives [19]. Details of the structures reported during the year follow:

References p. 132

V(CO)<sub>6</sub> An undistorted octahedral (O<sub>h</sub>) structure was found [V-C, 2.015(2), C-O 1.138(2)Å] [20], with evidence for a dynamic Jahn-Teller effect, as predicted earlier.

 $Cr(CO)_{3}(C_{6}H_{6})$  In the vapour phase, the molecule is a nearly unhindered internal rotor, the vapour consisting of a mixture of several conformatons between eclipsed and staggered  $C_{6}H_{6}$  and  $Cr(CO)_{3}$  groups [21]. Bond distances: C-C 1.417(3), Cr-C(C<sub>6</sub>H<sub>6</sub>) 2.208(6), Cr-C(CO) 1.863(5)Å; angle OC-Cr-CO 88.6(11)°.  $M(C_{5}H_{5})_{2}$  (M = V or Cr) Both molecules appear to have the eclipsed configuration, although a model with staggered rings cannot be definitely ruled out [22]. In the chromium complex, the C-H bonds are bent towards the metal atom by 2.9°. Some discussion of the structures of known  $M(C_{5}H_{5})_{2}$  (M = first row transition element) compounds with respect to their electronic structures is given; the M-C distances increase regularly with degree of electronic unsaturation.

 $Mn(MH_3)(CO)_5$  (H = Si or Ca) In both complexes, the metal-metal bond distances are shorter than the sum of the covalent radii [23]. Although  $p_{\pi}-d_{\pi}$  interactions can be invoked to explain this observation, Hephotoelectron spectra indicate that this effect is largely due to the better  $\sigma$ -acceptor characteristics of the Main Group hydride ligand.  $Mn(SiF_3)(CO)_5$  Again, an Mn-Si bond shorter than the sum of the covalent

radii is consistent with the purely  $\sigma$  effects suggested by the PE spectral data [24].

#### NEUTRON DIFFRACTION RESULTS

Neutron diffraction studies of several key compounds have been used to define details not available from X-ray diffraction. In Zeise's salt, K[PtCl<sub>3</sub>(C<sub>2</sub>H<sub>4</sub>)].H<sub>2</sub>O, the Pt-Cl bond *trans* to C<sub>2</sub>H<sub>4</sub>[2.340(2)Å] is significantly longer (19 $\sigma$ ) than the *cis* Pt-Cl bonds [2.302(2)Å] [25]. In

the ethylene ligand the C-C distance [1.375(4)A] is 0.038Å longer than in free ethylene, and the four hydrogen atoms are bent away from the metal [angle between the normals to the CH<sub>2</sub> planes ( $\alpha$ ), 32.5°]. These data indicate some  $d_{\pi}$ - $p_{\pi}$ \* back bonding, but the changes are considerably smaller than those found in metal complexes of C<sub>2</sub>F<sub>4</sub> and C<sub>2</sub>(CN)<sub>4</sub>.

A neutron diffraction study of  $Cr(CO)_6$  at 78K has been reported as the first stage of a determination of the electron density distribution in the molecule [26]. The octahedron is significantly distorted, but there are no significant differences between chemically equivalent bond distances: Cr-C, 1.918; C-O, 1.141Å. Comparison with  $Cr(CO)_3(C_6H_6)$  shows the CO groups are less strongly bonded to chromium in  $Cr(CO)_6$ , a result consistent with the larger electronegativity of CO compared to benzene. STRUCTURAL DIAGRAMS

As in previous years, these have been assembled usually using the diagram appearing in the paper. The n symbol has been used to arrange the organic ligands, using the largest group where several different ones are present. Thus, the diagrams for  $Ru[C(CO_2Me):CH(CO_2Me)](PPh_3)[C_5H_4C(OH)(CF_3)_2]$  and  $Fe_2(CO)_5(COC_6H_6C_5H_4)$  are in the n<sup>5</sup> section. Further arrangement has usually been in order of Periodic Group. Suitable brief footnotes to<sup>4</sup> each section draw attention to any unusual features noted in the structure, and reference numbers in square brackets [] refer to the list at the end of the article. The following headings have been used:

#### n<sup>1</sup>-Ligande

- (a) Simple carbonyls and carbonyl halides
- (b) Carbonyls containing Group V donor ligands
- (c) Carbonyl halides containing Group V donor ligands
- (d) Carbonyls and carbonyl halides containing Group VI donor ligands
- (e) Thiocarbonyls and selenocarbonyls

References p. 132

8

- (f) Isocyanide complexes
- (g) Carbene and carbyne complexes
- (h) Alkyls, aryls and acyls

(i) Complexes containing chelating n<sup>1</sup>-ligands

n<sup>2</sup>-Ligands

- (2η<sup>1</sup>)-Ligands (metallocycles)
- (b) Olefin complexes
- (c) Acetylene complexes
- (d) Complexes containing other three-membered rings

n<sup>3</sup>-Ligands

(a)  $(\eta^1 + \eta^2)$ -Ligands

(b) n<sup>3</sup>-Allyl complexes

n<sup>4</sup>-Ligands

- (a)  $(2n^{1}+n^{2})$ -Ligands
- (b)  $(\eta^1 + \eta^3)$ -Ligands
- (c)  $(2\eta^2)$ -Ligands
- (d) n<sup>4</sup>-Ligands (dienes)

η<sup>5</sup>-Ligands

- (a) Cyclopentadienyls
- (b) Cyclopentadienyl metal halides
- (c) Cyclopentadienyls containing other anionic ligands
- (d) Cyclopentadienyls contairing CO or PR3 ligands
- (e) Cyclopentadienyls containing other donor ligands
- (f) Cyclopentadienyls containing other n-bydrocarbon ligands
- (g) Substituted ferrocenes
- (h) Acyclic n<sup>5</sup>-Liganda
- (i)  $(\eta^2 + \eta^3)$ -Ligands

# $\eta^6$ -Ligands

- (a) Cyclic η<sup>6</sup>-ligands (arenes)
- (b) Acyclic n<sup>6</sup>-ligands
- (c)  $(2\eta^3)$ -Ligands

n<sup>7</sup>-Ligands

η<sup>θ</sup>-Ligands

n-Heteroatom Ligands

Silver Complexes

Polyhedral Metalloborane Complexes

Polyhedral Metallocarborane Complexes

Complexes Containing Metal-Metal Bonds

(a) Homobinuclear transition metal complexes

(b) Heterobinuclear transition metal complexes

(c) Binuclear complexes containing bridging hydrocarbon ligands

(d) Polynuclear clusters containing CO, CNR or PR<sub>3</sub> ligands

(e) Polynuclear clusters containing n-hydrocarbon ligands

(f) Complexes containing Transition Metal-Main Group metal bonds

(g) Polynuclear clusters containing Main Group elements

Hydride Complexes

Nitrosyls

Dinitrogen, Aryldiazo, Aryldiimine and Related Complexes Binary Transition Metal-Tertiary Phosphine Complexes

#### ABBREVIATIONS

acac acetylacetonate

cod cycloocta-1,5-diene

| 10                  |                                          |  |  |
|---------------------|------------------------------------------|--|--|
| Су                  | cyclohexyl                               |  |  |
| diars               | 1,2-bis(dimethylarsino)benzene           |  |  |
| dme                 | 1,2-dimethoxyethane                      |  |  |
| dmg                 | dimethylglyoximate                       |  |  |
| dmp                 | N,N-dimethylpiperazine                   |  |  |
| dmpe                | 1,2-bis(dimethylphosphino)ethane         |  |  |
| dpam                | bis(diphenylarsino)methane               |  |  |
| dppe                | 1,2-bis(diphenylphosphino)ethane         |  |  |
| dppm                | bis(diphenylphosphino)methane            |  |  |
| hfac                | hexafluoroacetylacetonate                |  |  |
| Meim                | 1-methylimidazole                        |  |  |
| Me <sub>2</sub> ind | 1,3-dimethylindenyl                      |  |  |
| nbd                 | norbornadiene (bicyclo[2.2.1]heptadiene) |  |  |
| оер                 | octaethylporphyrin                       |  |  |
| ру                  | pyridine                                 |  |  |
| pz                  | pyrazolyl                                |  |  |
| salpn               | propane-1,2-salicylideneiminato          |  |  |
| tcne                | tetracyanoethylene                       |  |  |
| tcnq                | tetracyanoquinodimethan                  |  |  |
| thf                 | tetrahydrofuran                          |  |  |
| to1                 | tolyl                                    |  |  |
| tpp                 | meso-tetraphenylporphin                  |  |  |

n<sup>1</sup>-LIGANDS

(a) Simple carbonyls and carbonyl halides

°c. .co 0<sup>C</sup> <sup>c</sup>o 



(2) NPr4 [RhI4(CO)2]

- (1) Neutron diffraction study; octahedron distorted in crystal [26].
- (2) Thermodynamically stable trans-(CO)<sub>2</sub>, Rh-C 1.89, Rh-I 2.69Å [28].

(b) Carbonyls containing Group V donor ligands





(4)  $[Cr(CO)_{5}]_{3}N_{2}H_{2}$  2 thf



(5) PhAs [Cr(CO)]



(6)  $Mo(CO)_4(P_4Me_6)$  E = P (7)  $Mo(CO)_4(P_2As_2Me_6)$  E = As

(3) Bond lengths in ligand indicate N atoms not bonded to Cr interact with C=C [113]. (4) Each proton of N<sub>2</sub>H<sub>2</sub> ligand forms H bridge with 0 of tetrahydrofuran [50]. (5) Stabilised arsinidene (phenylarsanediyl), with strong metal+ligand back-bonding (Cr-As, 2.38Å), trigonal planar As<sup>I</sup>. [compare analogous P compound (159)] [124]. (6) Short P-P [2.142(12)Å] contrasts with (Mo)P-P(P) [2.200(9)Å], and short







(8)  $M_0(CO)_4[(Ph_2PCH_2NMeCH_2)_2]$ 













Et

(17) [Rh(CO),](Oep)











(18) Cu(CO)[HB(pz)]

Mo-P[2.489(6)A]; compare (?) [65]. (?) Chelate ring non-planar; very short As-As [2.343(7)A], analogous to short P-P in (6), and short Mo-P, suggests some degree of  $\pi$ -delocalisation [64]. (8) Stable 9-membered ring, N not coordinated [245]. (9) Distorted octahedral with N-W-N, 64.1(5)°, and N-S-N, 93.4(7)° [compare with N-S-N, 113.6° in free ligand, and similar value in Pt complex containing monodentate N(SBu<sup>L</sup>)<sub>2</sub>] [92]. (10) Bridging PhN<sub>2</sub> group, with asymmetry Mn-N 2.031(2), 2.023(2), Mn-N-N 134.5(1), 119.5(1)°, probably arising from repulsions between Ph and CO; N=N 1.2332(23)A [168]. (11) Confirms IR, NMR structure proposal [269]. (12) (13) Both have metals bonded to porphyrin nucleus above and below ligand plane; macrocycle considerably distorted from planarity; no evidence for metal-metal interactions [285]. (14) 5-coordinate TBP Fe with singly-bent PhN2 ligand; bond parameters suggest multiple Fe-N, N-N bonds, i.e. complex of PhN2<sup>+</sup> with Fe(0) [276]. (15) Linear NO, CO disordered [257]. (16) Distorted 5-coordinate TBP, steric requirements of H allow quasitetrahedral geometry; singly-bent PhN, ligand with long Os-N [1.867(6)A] [271]. (17) Two square-planar

Rh(CO)<sub>2</sub> groups coordinated to deformed porphin skeleton, one above and one below macrocyclic plane; planes of adjacent pyrroles make angle of 18.3° [264]. (18) First structurally characterised Cu-CO link [av. Cu-CO, 1.765(14)Å]. [55].

(c) Carbonyl halides containing Group V donor ligands





(19) From  $MoCl_2(CO)_4 + P(OMe)_3$ , counter-anion is  $\{MoOCl_4[OP(OMe)_2]\}^{n-}$ ; value of *n* (and hence oxidation state) could not be determined from structural data [138]. (20) (21) rac and meso isomers; this reference contains theoretical description of stereochemistry of complexes  $[M(unidentate)_5(bidentate)]$  in terms of repulsion theory, and discussion of known structures in terms of the four different possible stereochemical types [272]. (22) Structures of two monoclinic forms give data on five independent molecules, which have essentially the same geometry, but show slight variations due to packing forces [123]. (23) (24) fac and mer isomers, both slightly distorted octahedral; no significant structural trans effect [161]. (25) Contains bridging dpam unit [234]. (26) cis-Diazene, Ru-N 2.086(5), N-N 1.218(7)Å, by protonation of aryldiazo complex; paper contains detailed discussion of <sup>1</sup>H NMR, Raman and IR spectra of aryldiazene and -diazo complexes [277]. (27) Double square planar coordination, with planes linked via Cl, and

# References p. 132





(30) IrCl(CO)[Ви2Р(СН<sub>2</sub>)<sub>10</sub>РВи2]



(26) [RuCI(CO)\_(PPh3)\_(HN2Ph)] (27) [RhCI(CO)(PMe2Ph)] (29) IrCI(CO)[P(0-tol)]







(23)  $fac-MnBr(CO)_{3}$  [PPh(OMe)\_{2} (24) mer-MnBr(CO)\_{3} [PPh(OMe)\_{2}]\_{2}







(20) MoI2(CO)2[rac-o-C6H4(ASMePh)2]





(21) MOI2(CO)3[meso-o-C6H4(ASMEPh)2]

at an angle of 123°; phosphines occupy cis positions; only weak Rh...Rh interaction [3.167(1)Å] [152]. (28) 26-membered chelate ring, with 60:40 distribution of rotamers, Cl-gauche form predominating; But groups accurately eclipsed [222]. (29) Two of o-CH3 groups located above and below square plane; general lack of reactivity (compared to PPh3 analogue) ascribed to high activation energies rather than steric properties of P(o-tol)<sub>3</sub> [273]. (30) 13-membered chelate ring; CO groups gauche with respect to But group [222].

(d) Carbonyls and carbonyl halides containing Group VI donor ligands



OC

Иe





(32) Mn (CO)<sub>3</sub>[SC(SMe)NMe

(34) Ru3CI2(CO)3(S2CNEt2)



NEt, (33) [Ru(CO)(S\_CNEt\_

oc



(35) Rh(acac)(CO)2

(31) Ligand S-bonded via thioketone group [44]. (32) Unusual bridging ligand from  $[Mn(CO)_5]^-$  + MeNCS, followed by MeI [86]. (33) Originally reported as  $[Ru(CS_2NEt_2)_2CO]$ ; short Ru-CO (ca. 1.80Å), bridging Ru-S (2.55Å) longer than others (mean, 2.399Å), asymmetric  $CS_2$  geometry [196]. (34) From "carbonylated RuCl<sub>3</sub>" + MeCS\_2NEt<sub>2</sub>; short Ru-CO (1.63 - 1.69Å) [202]. (35) Square planar molecules stack so that Rh atoms of neighbouring molecules occupy two remaining pseudo-octahedral positions (Rh....Rh, 3.253 and 3.271Å) [34].

(e) Thiocarbonyls and selenocarbonyls



(36) RuCl<sub>2</sub>(CO)(CSe)(PPh<sub>3</sub>)<sub>2</sub>

(36) First selenocarbonyl; Ru-Cl 2.427(5) (*trans* CO), 2.480(5)Å (*trans* CSe) indicate strong *trans* influence of this ligand; other bonds: Ru-C 1.89(2) (CO), 1.83(2) (CSe); C-O 1.21(3), C-Se 1.67(2)Å [256].

See also: 195.

(f) Isocyanide complexes



(37) Distorted capped trigonal prism (symmetry  $C_{2V}$ ); three Mo-C bonds, range 2.051 - 2.171Å; similar to [MoI(CNBu<sup>t</sup>)<sub>6</sub>]<sup>+</sup>, where I occupies capping position [251]. (38) Electron-rich Mo gives isocyanide some carbyne-like character, promoting ready electrophilic attack on N; Mo-C 2.101(7)Å, and Mo-C-N 156(1)° [294]. (39) Octahedral cation, Fe-C 1.874(4)Å [90]. (40) (41) Square pyramidal, comparison of Co(I) and Co(II) complexes shows change in effective coordination number and geometry; comparison with Ni(CN)<sub>5</sub><sup>3-</sup> shows better  $\pi$ -acceptor properties of PhNC over CN<sup>-</sup>, increasing Co-C bond order; apical Co-C bond *shortens* on going from Co(I) to Co(II) [249,250]. (42) Reference [279]. (13) Nearly linear ICoICoI chain, diamagnetic via spin exchange in central CoICo group [279].

See also: 78, 83, 109, 224, 236, 237, 274, 275.

(g) Carbene and carbyne complexes





(44) Cr(CO)<sub>5</sub>[C(C<sub>2</sub>Ph)(OEt)]

(45) AI[Mn(CO) (COMe)]



(46)  $[RuCl_2(caffeine)(NH_3)_3]Cl$ 



(48)  $Li(dmp) [Ta(CH_2Bu^t)_3(CBu^t)]$ 



(47) cis-PdCl<sub>2</sub>[C(OMe)(NHMe)]



(49) trans-Cr(CNEt<sub>2</sub>)Br(CO)<sub>4</sub>

(44) All atoms of carbene ligand, including Ph group, are coplanar;
Cr-C(carbene) 2.00(2)Å [128]. (45) New symmetrical "metallo-acac" anion [or bis(diacetyl)metallate], isolated as neutral Al chelate [206].
(46) Contains C-bonded purime derivative; no N-bonded complex obtained;

References p. 132

first Ru<sup>III</sup>-C distance [2.03(1)Å], trans influence of carbene ligand shown in Ru-Cl distances, 2.427(3) (trans-C), 2.350(4)Å (cis-C) [37]. (47) cis-Bis-carbene complex; long Pd-Cl [2.387(1)Å] results from trans influence of carbene; bond distances indicate some delocalisation in O-C-N system [31]. (48) From "Ta(CH<sub>2</sub>Bu<sup>t</sup>)<sub>5</sub>" + BuLi + diamine(N,N<sup>\*</sup>-dimethylpiperazine); tetrahedral Ta, Ta-C(carbyne) 1.76, Ta-C(alkyl) 2.26Å; angle at carbyne C 165°; some interaction L1....CH<sub>2</sub>Bu<sup>t</sup> [179]. (49) Cr-C, 1.72(1); C-N 1.294(12)Å; indicates Cr=C-NR<sub>2</sub>  $\leftrightarrow$  Cr=C=NR<sub>2</sub> [45].

See also: 157, 178, 240.

(h) Alkyls, aryls and acyls







(50) Linear Ti-O-Ti, Ti-C 2.076(9)Å; no implication of Ti-C(β)
 π interaction [268]. (51) Distorted pentagonal bipyramid; 2C1,
 Me occupy 2 axial and disordered equatorial site, arrangements (a),







(52) [Fe(CO)<sub>4</sub>(C<sub>3</sub>H<sub>7</sub>)]

(53) Ru(OAc)(CH:N toi-p)(CO)(PPn3)2

(54) CoMe(OH2)(dmg),



(56) Co[CH(CN),](py)(salpn)



(57) Co[CCI:C(C<sub>6</sub>H<sub>4</sub>CI-p)<sub>2</sub>](py)(dmg)<sub>2</sub>

(55) CoMe(N<sub>2</sub>H<sub>3</sub>Me)(C<sub>10</sub>H<sub>14</sub>N<sub>8</sub>)  $L = NH_2NHMe$ 



(58) Ir(C6F5)(CO)(PPh3)2

(b), (c) 69, 22, 9% from refinement [144]. (52) Alkyl in axial position of TBP; new conformation found in  $N(PPh_3)_2^+$  cation [33]. (53) From  $Ru(O_2)(CO)(CN tol-p)(PPh_3)_2 + EtOH$ , via H transfer from Ru [284]. (54) Reference [48]. (55) Diamagnetic Co(III)-alkyl complex, but exhibits paramagnetic contact shifts [77]. (56) Trans influence of CH(CN)<sub>2</sub> group gives long Co-N(py), 2.06(1)Å [218]. (57) Reference [221]. (58) Ir-C(C\_6F\_5) 2.090(16)Å; reduced reactivity does not result from Ir-C\_6F5 T-bonding, but is probably steric in

(59) PdCI(CHJCOCHJCOCHJPh)(py)

(61) PtCI(CF2COCF2CI)(PPh3)

(62) PtPh<sub>2</sub>(dppm)

PMe<sub>3</sub>

(63)  $Pd[C_4Ph_4(OEt)](acac)(PMe_2Ph)$ (64) Pt(C2Me){C[CMe=C(CN)]=C6H4=C(CN)}(PMe3)

origin; C6F5 ring takes up edge-on position with respect to square plane [270]. (59) o-Benzyl acetoacetate derivative, with normally unstable cis-(py)<sub>2</sub> configuration; ligand bent vertical to Pd square plane [189]. (60) Cis-chloropalladation product, intermediate in general mechanism of Pd II-induced acetylene trimerisation; possible

(65)  $\left[ Pt(C_2Ph)(HNNC_6H_4F)(PPh_3)_2 \right]^+$  (66)  $\left[ Cl(Ph_3P)_2Pt(CS_2)Pt(PPh_3)_2 \right] BF_4$ 













interaction between Pd and H on C(5) [137]. (61) Rearrangement product from Pt[OC(CF<sub>2</sub>CI)<sub>2</sub>](PPh<sub>3</sub>)<sub>2</sub>; very long Pt-P trans to C [260]. (62) Low J(PPt) results from distortion of valency angles at P and Pt, bond lengths normal [253]. (63) Formed by ring-opening of endo-alkoxycyclobutenyl complex [274]. (64) Addition of tenq across C=C, originally proposed as charge-transfer complex [210]. (65) From Pt(HC<sub>2</sub>Ph)(PPh<sub>3</sub>)<sub>2</sub> + PhN<sub>2</sub><sup>+</sup>; Pt-C 1.95(3), C=C 1.21(5)Å; compare ArN<sub>2</sub>H ligand with that in (346) [286]. (66) Metallodithiocarboxylate ligand; Pt-C [1.950(15)Å] is one of shortest Pt-C( $sp^2$ ) known, suggesting some Pt-C  $\pi$ -bonding [296].

See also:. 48, 98, 130, 151, 152, 172, 173, 174, 175, 176, 177, 178, 180, 181, 182, 187, 192, 213, 277, 310.

(i) Complexes containing chelating n<sup>1</sup>-ligands

C-donors



(67)  $\left\{ PtCl_2 \left[ (ClC_6H_3NH) C(NHMe) \right] (PEt_3)_2 \right\}^{+}$ 

(67) By chlorination of C(NHMe)(NHPh) complex; Pt<sup>IV</sup>-C(Ph), 2.034(11);
Pt<sup>IV</sup>-C(carbene), 1.973(11)Å; trans influence on Pt<sup>IV</sup>:
C1 < carbene < σ-Ph [178].</li>

References p. 132

N- or P-donors





(68) Mn[COC<sub>6</sub>H<sub>4</sub>P(Ph)(CH<sub>2</sub>)<sub>2</sub>PPh<sub>2</sub>](CO)(dppe)

(69) PtI(tp)(tpH) X = disordered C,S

(68) Reported as paramagnetic  $Mn(CO)(dppe)_2$ ; contains acyl group formed by attack of  $P(C_6H_4^-)$  on adjacent CO group [292]. (69) From  $K_2PtCl_4 + KI + 2-(2'-thienyl)pyridine(tp)$ ; coordination of one tp via pyridine N; second tp is metallated on thiophene ring in 3' position [145].

0- or S-donors





(75)  $Pd(C_6H_4CH_2NMe_2)(acacC_4F_6)$ 

(70) Metallated acetophenone with long C=O distance *via*   $\pi$ -delocalisation, also reflected in *trans*-Mn-CO distance [81]. (71) Non-planar chelate ring, MnC<sub>3</sub>S ring less strained than MnC<sub>3</sub>N ring in analogous complex derived from PhCH<sub>2</sub>NMe<sub>2</sub> [231]. (72) From Ir(acac)(cod) + C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>; contains (acacC<sub>4</sub>F<sub>6</sub>) ligand found in (73), and ligand formed by insertion of alkyne between Ir and one end of coordinated C=C [186]. (73) From Pd(acac)<sub>2</sub> + C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub> in 1,4-addition reaction, alkyne links  $\gamma$ -carbon of acac to Pd [146]. (74) From PdCl<sub>2</sub> + C<sub>2</sub>(CO<sub>2</sub>Me)<sub>2</sub>, then acac; ligand contains planar C<sub>5</sub>(CO<sub>2</sub>Me)<sub>5</sub> ring, while PdC<sub>4</sub>O chelate ring is considerably bent [200]. (75) Similar to (73); also contains *ortho*-metallated PhCH<sub>2</sub>NMe<sub>2</sub> [146]. See also: 161, 167, 303.

η<sup>2</sup>-LIGANDS

(a) (2n<sup>1</sup>)-Ligands (Metallocycles)





(77) Fe(CO)<sub>4</sub>(C<sub>12</sub>H<sub>8</sub>O)





(78)  $Pt[C(CF_3):C(CF_3)]_{(CNBu')_2}$ 



(76) From MeC<sub>2</sub>C<sub>2</sub>Me + Fe(CO)<sub>5</sub>; axial CO groups bent towards metallocycle, with C-Fe-C 166° [79]. (77) From naphtho[b]cyclopropene + Fe<sub>2</sub>(CO)<sub>9</sub>; chelate ring bent along C(11) - C(12) by 15° [126]. (78) Formed by ring-opening of  $n^2$ -C<sub>6</sub>(CF<sub>3</sub>)<sub>6</sub> complex; *cis*, *cis*, *cis*-triene, cannot be converted thermally to previously reported *cis*, *trans*, *cis*-triene [194]. (79) Hydroxo-bridged dimer [224].

See also: 184, 254, 258.

(b) Olefin complexes

(80)  $n^2$ -Acenaphthylene complex,with C=C in equatorial position; fused C<sub>6</sub> rings exhibit alternating C-C distances as found with naphthalene; first accurate (olefin)Fe(CO)<sub>4</sub> structure [125]. (81) Olefins symmetrically bonded in converse orientations, with Rh-C(H<sub>2</sub>) 2.131(12), Rh-C(C<sub>2</sub>) 2.073(11)Å, angle between ring plane and C=C 153° [101]. (82) TBP Rh, with one P, 2C=C forming equatorial plane; orientation of one of the C=C bonds in this plane considerably distorts one butenyl group [239]. (83) TBP Rh, trans axial isocyanide ligands; fumaronitrile parameters: C=C 1.444(10)Å, substituents bent back by 20°; shows dynamic behaviour in solution [258]. (84) C<sub>2</sub>H<sub>4</sub> perpendicular to IrCIP<sub>2</sub>









(81) Rh(acac)(C4H6)2



(82) RhCI[P(CH2CH2CH=CH2)Ph2]





(84)  $IrCl(C_2H_4)(PPh_3)_2$ one  $C_2H_4$  H-atom not shown

plane with short C=C  $[1.375(10)^{\text{A}}]$ , consistent with its lability; negligible *trans* influence on Ir-Cl bond [259]. (85) Confirms Hoffmann-Rösch predictions: C=C bonds 1.36 (C<sub>2</sub>H<sub>4</sub>), 1.44Å (C<sub>2</sub>F<sub>4</sub>) [30]. (86) 3 C=C, Pt coplanar; mean C=C 1.38Å; Pd complex isostructural [30]. (87) C<sub>6</sub> ring no longer planar, with alternate long and short bonds around ring; a 74° [214]. (88) Angle between normals of CF<sub>2</sub> planes 80°, indicating considerable rehybridisation; C=C 1.45Å [255].









(88)  $Pt(C_2F_4)(AsPh_3)_2$ 





(86) Pt(C7H10)3





(94)- [PtCl3(C2H4)]











(89) Dihedral PtP<sub>2</sub>/PtC<sub>2</sub> planes 10.8°; C=C 1.429(14)Å; dihedral between substituent planes 80°; discussion of bonding in this complex using ESCA data [262]. (90) Allene skeleton bent at central C by 140.8(8)°; C=C bonds: 1.430(11) (coordinated), 1.316(11)Å (free) [265]. (91) Olefin bent along coordinated C=C, angle between planes 56°; olefinic C=C 1.52(2)Å, dihedral PtP<sub>2</sub>/PtC<sub>2</sub> 3.2°; non-bonding contacts result in slight asymmetry in PtC<sub>2</sub> unit [267].
(92) (93) Cyclopropenes do not ring open; parameters for (92) inaccurate (disorder) [263]. (94) Neutron diffraction study; Pt-C1 distances show trans influence of olefin: 2.340(2) (trans-C=C), 2.302(2)Å (trans-C1); C=C 1.375(4)Å; 4H bent away from Pt, angle between normals to CH<sub>2</sub> planes 32.5° [25].

See also: 158, 164.

(c) Alkyne complexes

(96) Pt(C7H10)(PPh3)

(95) Pt(C<sub>6</sub>H<sub>8</sub>)(PPh3)



(98) PtMe(MeC2Ph)[Et2B(P2)]



(97) Pt(MeC2Ph)(PPh3)



(95) (96) Complexes of small cyclic acetylenes; C=C bond distances 1.297(8) (C<sub>6</sub>), 1.283(5)Å (C<sub>7</sub>), with C-C=C angles 127.3 (C<sub>6</sub>), 138.8° (C<sub>7</sub>) [266]. (97) cis-bent alkyne, mean 40(1)°, with C=C, 1.277(25)Å, consistent with  $\Delta v$ (C=C) 478 cm<sup>-1</sup> [281]. (98) Reference [174]. (99) Bis-alkyne-metal complex; Pt-C=C dihedral 86°, C=C 1.35Å; each molecule H-bonded to 4 neighbours [217].

See also: 127, 150, 245, 246, 247, 277, 278, 280, 281.

(d) Complexes containing other three-membered rings and related systems



(100) MoO(S2)(S2CNPr2)2





(102) RhCI(SCNMe<sub>2</sub>)(S<sub>2</sub>CNMe<sub>2</sub>)(PPh<sub>3</sub>)

(101) Co<sub>2</sub>(CN)<sub>4</sub>(PMe<sub>2</sub>Ph)<sub>5</sub>(O<sub>2</sub>)

(100) From  $MoO_2(S_2CNPr_2)_2 + H_2S$ ; S-S 2.018(8)Å [116]. (101) From Co(CN)<sub>2</sub>(PMe<sub>2</sub>Ph)<sub>3</sub> + O<sub>2</sub>; 2 Co bridged by CN, with O<sub>2</sub> forming 3-membered ring [0-0, 1.441(11)Å] [280]. (102)  $\eta^2$ -Thiocarboxamido ligand has short Rh-C [1.895(16)Å] [212]. (103-107) See Table above. (108) Stabilisation of S<sub>2</sub>O<sub>2</sub>, from S<sub>2</sub> complex + NaIO<sub>4</sub>; S-S 2.041Å [289]. (109) Irreversible oxygenation of Ni(CNBu<sup>t</sup>)<sub>4</sub>; O-O 1.45(1)Å [66]. (110) CO<sub>2</sub> has bent geometry, with O-C-O 133°, C-O bond lengths



Bond lengths in dioxygen complexes

|        | Complex                                                                   | 0-0(Å) | M-0(Å)     | Reference |
|--------|---------------------------------------------------------------------------|--------|------------|-----------|
| (104)  | [Rh(O <sub>2</sub> )(PMe <sub>2</sub> Ph) <sub>4</sub> ]BPh <sub>4</sub>  | 1.43   | 2.04, 2.03 | [12]      |
| (103)  | [Rh(0 <sub>2</sub> )(AsMe <sub>2</sub> Ph) <sub>4</sub> ]C10 <sub>4</sub> | 1.46   | 2.03, 2.03 | [12, 240] |
| (105)  | $[Ir(0_2)(PMe_2Ph)_4]BPh_4$                                               | 1.49   | 2.05, 2.04 | [12]      |
| (106a) | [Ir(0 <sub>2</sub> )(dppm) <sub>2</sub> ]ClO <sub>4</sub>                 | 1.49   | 2.06, 2.05 | [12]      |
| (1065) | [Ir(0 <sub>2</sub> )(dppm) <sub>2</sub> ]PF <sub>6</sub>                  | 1.45   | 2.00, 2.01 | [12]      |
| (107)  | [1r(0 <sub>2</sub> )(dppe) <sub>2</sub> ]PF <sub>6</sub>                  | 1.52   | 2.05, 2.05 | [12, 288] |

1.22 (coord.), 1.17Å (free) [254]. (111) (112) Pt incorporated in non-planar 6-membered ring, from condensation of  $(CF_3)_2CO$ ; sequence of C-O bond lengths provides evidence for donation by O lone-pair into anti-bonding orbitals of  $C(CF_3)_2$  group; Pt-P bonds are short [237].

 $\eta^3$ -LIGANDS

(a) 
$$(n^1 - n^2)$$
-Ligands





(113) Trans influence of  $\sigma$ -C results in 2 CF<sub>3</sub>CO<sub>2</sub> groups bonded differently; bond weakening in one related to formation of catalytically active intermediates [219]. (114) From PdCl<sub>2</sub> + C<sub>2</sub>(CO<sub>2</sub>He)<sub>2</sub>, then py; 5-coordinate Pd<sup>II</sup>, distorted TBP with long Pd-N and Pd-Cl bonds [246].

(b) n<sup>3</sup>-Allyl complexes



(115) Mo(CO)2(C4H7) [Ph2B(P2)2]





(115) 16-electron complex, no interaction with *ortho*-hydrogen; small C-C-C angles at phenyl carbons bonded to B [208]. (116) Cyclobutane ring formed by insertion of coordinated olefin into Pd-C  $\sigma$  bond; bonding of cyclopentenyl group relieves crowding from *endo*-Ph group and Pd [201].

See also: 179, 263.

n<sup>4</sup>-LIGANDS

(a)  $(2n^1 + n^2)$ -Ligands



(117)  $Fe(CO)_3(C_{16}H_{20}O_8)$ 





(118)  $\operatorname{Ru}(CO)_{2}[P(OCH_{2})_{3}CMe]\left\{C_{6}H_{8}[C_{2}(CF_{3})_{2}]\right\}$ 

(119) Ni[C<sub>6</sub>(CF<sub>3</sub>)<sub>6</sub>][P(OMe)<sub>3</sub>]<sub>2</sub>

(117) Photo-adduct of  $Fe(CO)_3(C_4H_4) + Me_2$  maleate, with olefin formally inserting between Fe and 2 adjacent C atoms of C<sub>4</sub> ring to give 6-membered FeC<sub>5</sub> ring [160]. (118) Bis-adduct of  $C_2(CF_3)_2 + Ru(CO)_3(C_6H_8)$ , with alkyne formally inserting between Ru and both C atoms of original olefinic bond to give 7-membered rutheniacyclohepta-1,5-diene ring [184].

(119) Cis, trans, cis-triene, with central C=C also n<sup>2</sup>-bonded to Ni [149].

(b)  $(n^1 + n^3)$ -Ligands







(121)  $Fe(CO)_{2}[CF(CF_{3})CF_{2}CH_{2}CHCMeCH_{2}]$ 

(120) From vinyloxirane +  $Fe(CO)_5$ , ferrelactone structure confirmed configuration [57]. (121) From  $Fe(CO)_3(C_4H_5) + CF_3CF:CF_2$ ; structure determines direction of addition as  $FeCF(CF_3)CF_2$  [73].

(c)  $(2n^2)$ -Ligands



(122) Cr(CO)<sub>3</sub>(PPh<sub>3</sub>)(nbd)





Me



(125) Rh(acac)(cod)



34.







(126) Rh(acac)[C<sub>2</sub>H<sub>6</sub>(CO<sub>2</sub>Me)<sub>2</sub>]

(127) [IrCI(C<sub>4</sub>F<sub>6</sub>)(cod)]<sub>2</sub> half of dimeric molecule



(129) Ni(C4Me4B2F2)2



(122) Double bond trans to P is bonded more strongly than the other, with Cr-C distances differing by ca. 0.13Å, and C=C bonds 1.407 (trans P), 1.350 (trans CO) [226]. (123) 3-Methylene-4-vinyldihydrofuran-2(3H)-one ligand formed by ring-opening of 2,3-bis(hydroxymethyl)methylenecyclopropane with Fe<sub>2</sub>(CO)<sub>9</sub> [53]. (124) Bis-adduct of  $C_2(CF_3)_2$  + Fe(CO)<sub>3</sub>(C<sub>7</sub>H<sub>8</sub>), with addition of alkyne on *endo*-face of C<sub>7</sub>-ring to give one 3- and two 5-membered rings [184]. (125) Reference [100]. (126) Difference in C=C and Rh-C of substituted nbd ligand [134]. (127) Contains diene + alkyne coordinated to the same Ir atom; on heating forms isomer (192) [209]. (128) (129) Ligand from BF + C<sub>2</sub>Me<sub>2</sub>, isostructural with duroquinone (dq); these complexes obtained from ligand + Ni(CO)<sub>4</sub>, and general properties and structures similar to

Ni(dq)<sub>2</sub> [60, 136]. (130) Diels-Alder adduct from PtMe(cod)(C<sub>5</sub>H<sub>5</sub>) +  $C_2(CF_3)_2$ , with alkyne adding on opposite side to Pt, i.e. no metal interaction [151].

[See also: 185, 239, 242, 255.

(d) n<sup>4</sup>-Ligands













Me

Ňе

ဂ်

(137) Ru(CO)<sub>3</sub>(C<sub>4</sub>H<sub>2</sub>Ph<sub>2</sub>SiMe<sub>2</sub>)

co



Ph

 $\Omega^{C}$ 











(135) Fe(CO)<sub>3</sub>(C<sub>12</sub>H<sub>16</sub>)

(136) Ru(CO)<sub>3</sub>(C<sub>16</sub>H<sub>16</sub>)

PraP

Praf

(138) IrH(C4H6)(PPr3)
(131) 2 C<sub>8</sub> rings bonded via  $n^3$  bonds, one via  $n^4$ ; in solution all ring protons are equivalent, so detailed grometry probably determined by packing forces; formally Nb<sup>I</sup>, 16-electron system [211]. (132) From Mo vapour + C4H6; trigonal prismatic arrangement of planar diene ligands around Mo [91]. (133) Paramagnetic, from Mn(CO), (NO) + C4H6; planar diene ligands, H atom positions consistent with rehybridisation indicated by C-C distances [46]. (134) No Mn-S interaction; zwitterionic structure involving sulphonium ion and Mn(-I) species; fluorocarbon bonded via  $\eta^4$  interaction [95]. (135) Cyclobutane ring non-planar, cyclohexane ring has twist-chair conformation [122]. (136) New CaHa dimer, perhaps formed by Diels-Alder addition to Ru(CO)<sub>3</sub>(C<sub>8</sub>H<sub>8</sub>) [159]. (137) Comparison of free silole and Ru(CO)<sub>3</sub> derivative; Si atom above butadiene plane, opposite side from Ru, with dihedral 32° [185]. (138) Distorted TBP; central bond of C4H6 (1.408Å) shorter than outer two, which differ because of coordination to axial (1.442A) and equatorial (1.433Å) positions; Ir-H, 1.77(12)A [197].

See also: 165, 166, 182, 183.

η<sup>5</sup>-LIGANDS

References p. 132

(a) Cyclopentadienyls





(139) Staggered, indenyl ring rotated about Fe-C<sub>5</sub> ring axis by 93.5°, resulting in rotation angle  $\phi$  21.7° [195]. (140) Accurate determination [56].

(b) Cyclopentadienyl metal halides



(145) TiCl2(C5Me5)

 $MCl_2(C_5H_4Me)_2$ (143) M = Ti; (144) M = V

(141) Distorted tetrahedral Yb, approximately square Yb<sub>2</sub>Cl<sub>2</sub> moiety
[213]. (142) Short U-F 2.11Å, evidence for ring C-H...F bonding
linking adjacent molecules [120]. (143) (144) Main differences:
Cl-M-Cl 87.1(V), 93.2°(Ti); M-Cl 2.398(2)(V), 2.360(2)(Ti), compared
to shorter V-C; angles between ring normals 129.9(V), 133.4°(Ti) [8].
(145) Distorted tetrahedral Ti, several ring Me groups bent out of
C<sub>5</sub> plane away from Ti to relieve Cl-Me and Me-Me crowding [175].
(146) More accurate determination [cf. C.G. Vonk, J.Cryst.Molec.Struct.,
3 (1973) 201] [170].

(146) [TiCI(C5H5)]2nCl2

(c) Cyclopentadienyls containing other anionic ligards



(147) Nb-H 2.0(1)Å (high R value), Nb-B 2.26(6)Å, angle between ring normals 130°; comparisons made with Ti(BH<sub>4</sub>)(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> and other Nb(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> derivatives [61]. (148) Central S-S bond [2.019(9)Å] significantly shorter than others [2.083(7)Å], S-S-S bond angles also small (av. 100.4°) (cf. 107.9° in S<sub>B</sub>). Angle between normals to C<sub>5</sub> planes is 134° [58].

(d) Cyclopentadienyls containing CO or PR3 ligands





(150) Nb(CO)(PhC2GePh3)2(C5H5)

### References p. 132





disorder in cyanopropyt ligand

Мe

(151) Mo(CO(CH2)2NH2)(CO)2(C5H5)



(153) [Mo(CO) (C14H14N2)(C5H5)]

(154) [W(CO)\_(C\_H\_)AIMe2]

(149) First structural characterisation of Ti-CO link; Ti-CO [2.030(11)A] longer than expected [84]. (150) From Nb(CO)<sub>4</sub>(C<sub>5</sub>H<sub>5</sub>) + PhC<sub>2</sub>GePh<sub>3</sub>; complex stabilised by bulky GePh<sub>3</sub> group (cf. C<sub>2</sub>Ph<sub>2</sub> derivative which forms dimer); alkyne shows usual lengthened CEC, substituents bent back [295]. (151) Intermolecular H-binding between acyl acceptor and amine donor: N-H...O; chelating 3-aminopropionyl group [59]. (152) Disorder in Me, one CN; Mo-C (alkyl) 2.414(4)Å, longer than normal [236]. (153) Absolute configuration determined; u-phenylethyl group has S configuration, while that at Mo cannot be specified using present rules [187]. (154) AlMe<sub>2</sub> groups O-bonded to CO groups on different W atoms, to give slightly puckered 12-membered rings [172]. (155) (156) For M(CO)<sub>3</sub>(C<sub>5</sub>H<sub>4</sub>R), Mn, Re complexes are isostructural only for R=H; other pairs (R=COMe, COPh) differ in







(159) [Mn(CO)<sub>2</sub>(C<sub>5</sub>H<sub>5</sub>)]<sub>2</sub>PPh





(157) Mn(CO),[CPh (COPh)](C5H5)



(158) Mn(CO)<sub>2</sub>(CH<sub>2</sub>=CHCOMe)(C<sub>5</sub>H<sub>5</sub>)



(161) Fe[NH:C(CF3)N:C(CF3)](CO)(C5H5)

(162) Fe(CO) [P(CF3)](C5H5)

(163) Fe(CO) [P(O)(CF3)](C5H5)

(160) [Mn(CO)(C5H5)],P3Ph3

orientations of CO groups and ring [52]. (157) No heteroatoms bonded to carbene C; all carbene C-C distances equal [182]. (158) Olefin in s-cis configuration, but no interaction between CO group and metal [75]. (159) Phosphinidene complex obtained by heating (160) at  $110^{\circ}/10^{-2}$  torr; Mn<sub>2</sub>CP coplanar, trigonal coordination stabilised by  $d_{\pi}-d_{\pi}$  bonds [169]. (160) By demetallation



(164) [Fe(C3Me4)(CO)2(C5H5)]BF4



(165) Fe2(CO) [COC6H6C5H4]



(167) Ru[C2H(CO2Me2][C5H4C(OH)(CF32)](PPh3)

PPh<sub>3</sub>

ОМе

(166) Fe2(CO)5(C5H4CMe2)2

of Mn(CO)<sub>2</sub>(C<sub>5</sub>H<sub>5</sub>)(PPhLi<sub>2</sub>) with N,N-dihaloamine to give trinuclear derivative of cyclotriphosphane ligand; 2Mn above, one below ring plane [261]. (161) From FeMe(CO)<sub>2</sub>(C<sub>5</sub>H<sub>5</sub>) + CF<sub>3</sub>CN; planar delocalised FeNCNC ring, H attached to N not shared with other N; some bond shortening (C-CF<sub>3</sub>, C-F) noted [51]. (162) (163) Covalent radius of P essentially same in both, and different Fe-P [2.265(3) and 2.191(3)Å, respectively] interpreted in terms of increased Fe+P  $d_{\pi}$ - $d_{\pi}$  back-bonding in (163), also supported by shift in v(CO) and Fe-C, C-O bond lengths consistent with decreased Fe+CO back bonding [41].

(164) Tetramethylallene has C=C=C angle 145.7(7)°, C=C (coord.) 1.367, C=C (free) 1.335Å; asymmetric distortions of Me groups arise from steric interactions [111]. (165) Fe-C (acyl) 1.9596(30)Å, significantly shorter than Fe-C(sp<sup>3</sup>), but similer to acyl bond in Fe(COMe)(CO)<sub>2</sub>[HB(pz)<sub>3</sub>] [142]. (166) From dimethylfulvene; independent  $n^4$ ,  $n^5$  systems, in contrast to Fe-Fe bonded complex (259) obtained using diphenylfulvene [188]. (167) From Ru{C(CF<sub>3</sub>):CH(CF<sub>3</sub>)]-(PPh<sub>3</sub>)<sub>2</sub>(C<sub>5</sub>H<sub>5</sub>) + (CF<sub>3</sub>)<sub>2</sub>CO; intramolecular H-bond [235].

(e) Cyclopentadienyls containing other donor ligands





(168) [Ti(dme)(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>]Zn<sub>2</sub>Cl<sub>6</sub>

(169)  $[MO(NH_3)(HNCMEEt)(C_5H_5)_2](PF_6)_2$ 



(170)  $MoI(NO)(NH_2NHPh)(C_5H_5)$ 



(171)  $\left\{ Rh(C_5 Me_5) [HB(pz)_3] \right\}$ 

(168) Ti(III) cation with 0-coordination; angle between ring normals
133.5°, 0-Ti-0 76.6°, due to small bite of diether [170]. (169) Planar
o-ketimine ligand; angle between ring normals 134° [114]. (170) Both

N atoms of phenylhydrazine bonded to Mo; first complex with hydrazine bidentate to one metal atom; all H atoms located [76]. (171)  $C_5$  ring planar, 4 Me groups displaced away from  $HB(pz)_3$  ligand, latter is slightly twisted [148].

(f) Cyclopentadienyls containing n-hydrocarbon ligands





(172) U(n'-C4H7)(C5H5)

(173) U(C4H9)(C5H5)3





(174)  $U(CH_2C_6H_4Me_p)(C_5H_5)_3$ 







(180) WMe[(CH<sub>2</sub>),PMe<sub>2</sub>Ph](C<sub>5</sub>H<sub>5</sub>)

(178) Ta(CH<sub>2</sub>)Me(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>



(179)  $Mo[(pz) C_3(CF_3)_3 CH(CF_3)](C_5H_5)$ 



Me Me H<sub>2</sub> W CH<sub>2</sub> Me

(181)  $W(CH_2C_6H_3Me_2)_2(C_5H_5)_2$ 



(182)  $Fe(COCF_2C_5H_5)(C_5H_5)$ 



(183) Со[С<sub>4</sub>(СF<sub>3</sub>)<sub>4</sub>Р(О)ОН](С<sub>5</sub>Н<sub>5</sub>)



(184) Co[(C2Ph2)(PhNC)]C5H5)

o. 132

(185) Rh(C5Cl5)(C8H12)

(172) n<sup>1</sup>-2-Methylallyl group, U-C 2.48(3)Å; π-allyl structure not
favoured, increase in coordinate bond energy less than
reorganisational energy [162]. (173) (174) U-C 2.425(29), 2.553(22)Å;
angle U-C-C 127.9(19), 128.5(13)°, respectively; large intramolecular
interactions between C<sub>5</sub> groups and σ-alkyl [164]. (175) (176) (177) All

complexes isostructural, allow comparisons down the Group, lanthanide contraction results in unit cell of Hf compound being 5Å<sup>3</sup> less than Zr; indenyl groups in *qauche* configuration. Bond distances: M-C(Me) 2.21(2)(Ti), 2.51(6)(Zr), 2.332(12)A(Hf); angles between normals to C<sub>5</sub> ring planes 119.8(Ti), 120.8(Zr), 121.0(9)°(Hf) [171]. (178) First isolable CH<sub>2</sub> complex; Ti-C(CH<sub>2</sub>) 2.026(10), Ti-C(Me) 2.246(12)A; angle between ring normals 135.7° [87]. (179) From MoC1[C2(CF3)2](C5H5) + KHB(pz)<sub>3</sub>; contains unusual electronegatively-susbtituted n<sup>3</sup>-allyl system, using 3 C atoms from dimerised C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub> [158]. (180) Formed by attack of PMe<sub>2</sub>Ph on cationic C<sub>2</sub>H<sub>4</sub> complex [191]. (181) Confirms structure, and explains inequivalence of methylene protons [229]. (182) From  $Fe(CO)_2(\eta^1-C_5H_5)(\eta^5-C_5H_5) + C_2F_4$ ; formation involves cleavage of C=C in fluoro-olefin [83]. (183) Reaction product from  $Co(PF_3)_2(C_5H_5) + C_2(CF_3)_2$ ; P-heterocycle acts as 4-electron donor [95]. (184) Metallocycle from  $C_2Ph_2$  + PhNC on cobalt, reacts with excess isocyanide to give a tris(arylimino)diphenylcyclopentene [243]. (185) Localised bonding in n<sup>5</sup>-C<sub>5</sub>Cl<sub>5</sub> ring with 2 short [1.399(6)A], 3 long [1.436(5)A] C-C bonds, bending of ring so that one carbon is brought closer to Rh, and 3 types of Rh-C bond; consistent with  $(\eta^1 + 2\eta^2) - C_5 C l_5 \text{ group [97]}.$ 

Other complexes containing n-cyclopentadienyl groups: 216, 218, 222, 223, 226, 232, 233, 236, 241, 242, 243, 244, 246, 247, 253, 262, 263, 277, 279, 282, 285, 286, 287, 288.





47

(189)  $Fe(C_5H_4C_5H_8C_5H_4)$ 



(h) Acyclic n<sup>5</sup>-Ligands



(191) CrH(PF3)3(C8H11)

(191) From Cr vapour +  $C_8H_{12}$  + PF<sub>3</sub>; intermediate in conversion 1,3- to 1,5-C<sub>8</sub>H<sub>12</sub> via π-allyl-hydride mechanism [332].

(i)  $(\eta^2 + \eta^3)$ -Ligands



# (192) [IrCI[C(CF<sub>3</sub>):CH(CF<sub>3</sub>)](C<sub>8</sub>H<sub>11</sub>)]<sub>2</sub>

(192) Formed from (127); alkyne has abstracted H atom to give *cis*vinylic group, while original  $C_8H_{12}$  is now bonded as 1,2-n<sup>2</sup>-4,5,6-n<sup>3</sup> ligand [209].

n<sup>6</sup>-LIGANDS

(a) Cyclic n<sup>6</sup>-Ligands (arenes)



(193) [Cr(PhMe)\_](tcnq)



(195) Cr(CO)<sub>2</sub>(CS)(PhCO<sub>2</sub>Me)







# (196) Cr(CO)<sub>2</sub>(PPh<sub>3</sub>)(PhCO<sub>2</sub>Me)





co

(193) Isolated infinite stacks of CrAr2<sup>+</sup> and (tcnq)<sup>\*</sup> ions [109]. (194) One of pseudoasymmetric forms, m.p. 144° [98]. (195) Cr-C(0), 1.849(3); Cr-C(S), 1.792(2)Å [72]. (196) Shortest Cr-P bond [2.337(1)A]; no specific conformational features explain the unusually fast isotopic hydrogen exchange [227]. (197) Structural characterisation of Mo(PMe2Ph)4; short Mo-C bond indicates enhanced Mo-arene π-bonding in absence of strong π acids [241]. (198) Benzene ligand staggered with respect to B(pz)4 ligand [148].

See also: 296.

(b) Acyclic n<sup>6</sup>-Ligands



(199) Ph2 fulvene complex, with Cr attached asymmetrically to C5 ring and exocyclic double bond; ligand non-planar, unequal Cr-C distances [181]. (200) From [Mo(CO)<sub>3</sub>(C<sub>7</sub>H<sub>7</sub>)]<sup>+</sup> + Bu<sup>L</sup>MgBr [110].

(2n<sup>3</sup>)-Ligands (c)



(201) TBP, with axial Cl ligands; organic ligand is tail-tail dimer of isoprene [62]. (202) From *trans*-divinylcyclopropane; C<sub>3</sub> ring has opened, and overall structure resembles [RhCl(C<sub>3</sub>H<sub>5</sub>)<sub>2</sub>]<sub>2</sub>; bridging atom increases extent of n-allyl localisation [85]. (203) From allene +  $Ir(C_8H_{14})_2$  (hfac); ligand is allene tetramer [143].

(d) 
$$(n^1 + n^2 + n^3)$$
-Ligands



(204)  $[Rh(hfac)(C_8H_{10})]_4$ 

(204) From trans-6-vinylbicyclo[3.1.0]hex-2-ene +  $[RhCl(C_2H_4)_2]_2$ via cyclopropane ring-opening reaction; tetramer formed by  $(n^1 + n^3)$ bonding to one Rh,  $n^2$ -bonding to the other; undergoes rearrangement in solution at 338K [287].

n<sup>7</sup>-LIGANDS



 $MoX(CO)_2(C_7H_7)$ (205) X=CI; (206) X=Br

(205) (206) Isomorphous, Mo-Cl 2.598(5), Mo-Br 2.629(3)Å indicating greater  $d_{\pi}^{-}-d_{\pi}^{-}$  interaction in (206) [42].

See also: 284.

n<sup>8</sup>-LIGANDS



(207) [TICI(C8H8)]4

ces p. 132

Refere



(208) [Ti(thf)(C8H8)]2



(209) ZrCl2(thf)(C8H8)

(207) (208) Characterisation of Ti-cyclooctatetraene complexes as tetrameric (207) and dimeric (208);  $C_8H_8$  ligands are perpendicular to body diagonals of Ti<sub>4</sub>Cl<sub>4</sub> hexahedron in (207); in both,  $C_8H_8$  ligands have umbrella shape by bending of H atoms towards Ti [216]. (209) From  $Zr(C_8H_8)_2$  + HCl;  $C_8$  ring approximately planar, with C-H bonds inclined towards Zr; thf bond parameters are most accurate so far reported [88].

See also: 131, 280.

#### η-HETEROATOM LIGANDS



<sup>(210)</sup> Fe(CO)3[C6H4(BMe)5]

(210) Bonding to Fe fixes electron density in benzene ring; as shown by bond distances and electron density map, which also indicates m-electron density in ring B-C bonds [74].

Heterocyclic ligands attached via carbon atoms are present in: 128, 129, 134, 137, 183.



(211) (PhCH2CH2Ph)2AgCIO4





(211) Ag disordered so that some are square pyramidal, others square planar, bonded to phenyl ring and 0 of ClO<sub>4</sub>, resulting from small energy difference in long Ag-O interactions [108]. (212) Isolated O-bridged dimers; Ag coordinated to 2 O, 2 C<sub>6</sub> rings [135]. (213) From RhCl(PPh<sub>3</sub>)<sub>3</sub> + AgC<sub>2</sub>C<sub>6</sub>F<sub>5</sub>; no Rh-Ag bond, zwitterionic formulation [Ag(PPh<sub>3</sub>)]<sub>3</sub><sup>+</sup>[Rh(C<sub>2</sub>C<sub>6</sub>F<sub>5</sub>)<sub>5</sub> (PPh<sub>3</sub>)]<sup>3-</sup> with additional  $\pi$  bonding between Ag and C=C [298].

### POLYHEDRAL METALLOBORANE COMPLEXES

(214) From (1- or 2-)-BrB<sub>5</sub>H<sub>8</sub> + IrCl(CO) (PMe<sub>3</sub>)<sub>2</sub>;  $\sigma$ -B exerts strong trans-lengthening effect: Ir-Br 2.638(1) (trans B), 2.516(1)Å (trans CO); Ir-B 2.071(14)Å [35]. (215) Cu bonded to B<sub>10</sub>H<sub>10</sub><sup>2-</sup> via CuHBBH chelate rings, with Cu-H 1.86(6), 2.08(7)Å; discussion of





(215) [(Ph<sub>3</sub>P)Cu]<sub>2</sub>B<sub>10</sub>H<sub>10</sub>

(214) Ir(B5H8)Br2(CO)(PMe3)2

bonding in relation to geometries and electronic requirements of related *nido*-metalloboranes [309].

### POLYHEDRAL METALLOCARBORANE COMPLEXES

In all structures 🖉 indicates carbon.

(216) Triple-decked sandwich, with one B, C disordered; outer C<sub>5</sub> rings tilted toward Me group on  $B_3C_2$  ligand; also considered as 7-vertex polyhedron [99]. (217) From Pt(styrene)(PEt<sub>3</sub>)<sub>2</sub> + closo-2,4-C<sub>2</sub>B<sub>5</sub>H<sub>7</sub>; highly distorted tricapped trigonal prism [38]. (218) From polyhedral expansion of 4,5-C<sub>2</sub>B<sub>7</sub>H<sub>9</sub> + FeCl<sub>2</sub> + NaC<sub>5</sub>H<sub>5</sub>, diamagnetic isomer; new 10-vertex species derived from bicapped square antiprism [89]. (219) Carbadibora-allyl complex from Ni(cod)(PEt<sub>3</sub>)<sub>2</sub> + arachno-5,9-C<sub>2</sub>B<sub>7</sub> species [140]. (220) From Pt(trans-stilbene)(PEt<sub>3</sub>)<sub>2</sub> + 1,6-Me<sub>2</sub>-1,6-C<sub>2</sub>B<sub>7</sub>H<sub>7</sub>; bicapped square antiprism, with non-bonding Pt-C distance giving nidostructure and open BCBPt face [139]. (221) Obtained from (225) by passing through activated charcoal; nido-geometry, with open CPtBCB face [38]. (222) (223) Products from Friedel-Crafts acetylation of



(217) closo-2,3-[(Et<sub>3</sub>P)<sub>2</sub>]<sub>2</sub>-1,2,3,6-CPtCB<sub>5</sub>H<sub>7</sub>



(219) 6.6-(Et3P)-5.9-Me-6,5.9-NiCB-HA



(218) 1,6-(C5H5)2-1,6,2,3-Fe2C2B6H8



(220) 2,7-Mez-9,9-(EtzP)-2,7,9-C2PtB7H7







(221) 8,8-(Me,P)-7,8,10-CPtCB8H0

(222) (C<sub>5</sub>H<sub>5</sub>)CoB<sub>9</sub>C<sub>2</sub>H<sub>10</sub>(COMe) (223) (C<sub>5</sub>H<sub>5</sub>)CoB<sub>9</sub>C<sub>2</sub>H<sub>10</sub>(OCOMe)

 $(C_{5}H_{5})Co[n-(3)-1,2-B_{9}C_{2}H_{11}]$  [47]. (224) Pd distorted square planar, little interaction Pd-C [2.600(6)Å]; zwitterionic formulation  $(Me_{3}N)^{+}(PdCB_{10})^{-}$  [117]. (225) From Pd(cod)(PMe\_{3})<sub>2</sub> + closo-1,6-C<sub>2</sub>B<sub>8</sub>H<sub>10</sub>; second Pt lies outside polyhedral framework [38]. (226) From Pt(trans-stilbene)(PEt\_{3})<sub>2</sub> + 1-(C\_{5}H\_{5})-1,2,4-CoC\_{2}B\_{8}H\_{10}; preliminary



(216)  $[(C_5H_5)Co]_2B_3C_2H_4Me$  $\Theta = disordered B_4C$ 





PhMe<sub>2</sub>

Me

PMe<sub>2</sub>Ph

(224) 1,1-(BuNC)-2-(NMe3)-1,2-PdCB10H10







(228) [Ti(1,6-Me2-1,6-C2B10H10)]2-

diagram only (R 8.12) [117]. (227) From Pt(PMe<sub>2</sub>Ph)<sub>4</sub> + 2,3-Me<sub>2</sub>-2,3-C<sub>2</sub>B<sub>9</sub>H<sub>9</sub>; *closo*-structure, with square planar Pt, P atoms *trans* to B atom, and mid-point of B-B bond; Pt-C bond long and very weak [176, 177]. (228) First metallocarborane with Group IVa metal; two 13-vertex closed polyhedra linked through Ti, with metal bonded to approximately parallel 6-membered rings; electron deficient [39].

### COMPLEXES CONTAINING METAL-METAL BONDS

### (a) Homobinuclear transition metal complexes



(229) (230) Linear eclipsed and bent staggered forms of anion in NEt4<sup>+</sup> and N(PPh<sub>3</sub>)2<sup>+</sup> salts, respectively; linear W-H-W has W-W separation [3.504(1)Å] shorter than expected (ca. 3.75Å); bent W-H-W has W-W distance 3.391(1)Å. Configuration probably determined by crystal packing forces, in solution both salts give linear anion [49].





(237) [Pd2(CNMe)] (PF6)



(239) Pt2[OC(CF3)2](C8H12)2

(231) Contains I-bridged Mo-Mo bond [333]. (232) From thermal decomposition of [Mo(CO)<sub>3</sub>(C<sub>5</sub>H<sub>5</sub>)]<sub>2</sub>, product has Mo=Mo triple bond; CO groups probably interact with Mo-Mo bond, forming asymmetric bridging units [107]. (233) From [Mo(CO)<sub>3</sub>(C<sub>5</sub>H<sub>5</sub>)]<sub>2</sub> + S(NBu<sup>t</sup>)<sub>2</sub>; planar Mo<sub>2</sub>S<sub>2</sub> unit, with Mo=NBu<sup>t</sup> bond [1.733(4)Å]; some multiple bond character in Mo-Mo link; similar to isoelectronic Mo<sub>2</sub>(O)<sub>2</sub>(S)<sub>2</sub>(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub> [156]. (234) Asymmetric bridging alkylideneimino ligand balanced by asymmetric bridging CO, with Mn-Mn bond [102]. (235) Contains unusual CO group bonded conventionally to Mn(1), via C and O to Mn(2): Mn(1)-C 1.93, Mn(2)-C 2.01, Mn(2)-O 2.29Å; v(CO) 1645 cm<sup>-1</sup> [290, 291]. (236) Angle between Fe(CO)<sub>2</sub>Fe planes 165.6°; terminal isocyanide [150]. (237) From Na<sub>2</sub>PdCl<sub>4</sub> + MeNC; both Pd square planar, dihedral 86.2° [93]. (238) Two slightly distorted PtCl<sub>2</sub>(CO) moieties

linked by unbridged Pt-Pt bond, dihedral 60°, CO in transoid configuration; long Pt-Cl [2.404(22)Å] trans to Pt-Pt bond, cis 2.337(10)Å [27]. (239) From Pt(C<sub>8</sub>H<sub>12</sub>)<sub>2</sub> + (CF<sub>3</sub>)<sub>2</sub>CO; latter links 2<sup>#</sup>Pt to give cyclic Pt<sub>2</sub>CO molety; variation in ligands trans to  $n^2$  bonds of C<sub>8</sub>H<sub>12</sub> gives 3 distinct Pt-C distances [163].

(b) Heterobinuclear transition metal complexes



(240) MnRe(CO) [CMe(OMe)]





(242) FeCo(CO) (nbd)(C5H5)



 $(243)(C_5H_5)NiCo(CO)_4[P(C_6H_4F-\rho)_3]$ 

(244) (MeC<sub>5</sub>H<sub>4</sub>)NiCo(CO)<sub>4</sub>(PCyPh<sub>2</sub>)

(240) From MeMn(CO)<sub>5</sub> + Re(CO)<sub>5</sub>, followed by alkylation with MeSO<sub>3</sub>F; carbene on Re, perhaps by rearrangement  $vi\alpha$  bridging carbene ligand [80]. (241) Angle between Fe(CO)<sub>2</sub>Co planes 143.5°, asymmetry in bridge CO bonds to Fe, Co [69]. (242) Non-planar Fe(CO)<sub>2</sub>Co, carbonyl O moves from Fe to Co; angle between planes 160.6° [130]. (243) (244) Angle between planes of Co(CO)<sub>2</sub>Ni system 133.9° (both) [220, 228].

60











multiple bond character [131]. (246) From  $Fe_2(CO)_9 + Ni(C_2H)(PPh_3)(C_5H_5);$ structure shows migration of PPh3 to acetylide, which bridges Fe, Ni atoms [225]. (247) Bridging alkyne o-bonded to Rh leading to planar C2Rh2 molety, and C=C 1.285(44)A [129]. (248) Cycloaddition product of C2Ph2 + pyrazoline-Fe2(CO)6 complex [242]. (249) Keto group adjacent

(245) From Fe2(CO)9 + C2Bu2<sup>t</sup>; short Fe-Fe distance indicates









co

(257) Ru2(CO)5(C16H16)

M2(CO)(C5H4CPh2) (259) M = Fe; (260) M = Ru



ces p. 132

ģυt

(258) Fe2(CO) [[HC2Bu1]CO]





(261) Mn2(CO) (C8H8) (262) [Pd (PPr3)] (Br) (C5H5) (263) [Pd (PPr3)] (C4H7) (C5H5)

to Fe-C σ bond in solid state [104]. (250) Minor product from 2,7-Me<sub>2</sub>oxepin + Fe(CO); ligand can be described formally as ketocarbene [106]. (251) Almost identical bond parameters in series (C8H10), (C9H10) and  $(C_{10}H_{12})$ -Fe<sub>2</sub>(CO)<sub>6</sub>; trans influence of Fe- $\sigma$ (C) shown by lengthening of Fe-CO(trans) [119]. (252) <sup>13</sup>C NMR and structural study enables fluxional processes in this and related complexes to be specified completely [190]. (253) From [Fe(CO)<sub>2</sub>(C<sub>5</sub>H<sub>5</sub>)]<sub>2</sub> + C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>; ferracyclohexa-2,5-diemone has boat conformation, attached to second Fe(C<sub>5</sub>H<sub>5</sub>) group by  $2\eta^2$  bonds [83]. (254) Tetraphenylferrole complex from Fe(CO)<sub>3</sub>(C<sub>7H8</sub>) + C<sub>2</sub>Fh<sub>2</sub>; comparison with 5 related structures [244]. (255) From Bh<sub>6</sub>(CO)<sub>16</sub> + nbd; ring-opening gives acylvinylcyclopentene

ligand bridging both Rh atoms; bridging CO is asymmetric, with Rh-C bonds 1.99, 2.15Å; nbd ligands also bonded asymmetrically [199]. (256) Contains coordinated C=C  $\beta$  to Fe-C(0) z bond, and  $\eta^3$ -allyl group, one carbon of which is also part of the coordinated C=C [131]. (257) Contains valence tautomer of new C<sub>8</sub>H<sub>8</sub> dimer; bonding to Ru(CO)<sub>2</sub> group involves one of two C=C of 1,3-diene unit; complex is fluxional in solution as expected [183]. (258) From Fe<sub>3</sub>(CO)<sub>12</sub> + HC<sub>2</sub>Bu<sup>t</sup>; organic ligand formed from (3HC<sub>2</sub>Bu<sup>t</sup> + CO), attached via  $3\eta^1$  bonds to one Fe, and ( $\eta^2 + \eta^3$ ) to second Fe [215]. (259) (260) From diphenylfulvene [188, 198]. (267) C<sub>8</sub> ligand bonded via  $\eta^4$  bonds to each Mn, rather than the arrangement found in Fe<sub>2</sub>(CO)<sub>5</sub>(C<sub>6</sub>H<sub>8</sub>) [105]. (262) From PdBr(PPr<sub>3</sub><sup>i</sup>)(C<sub>5</sub>H<sub>5</sub>) + Mg; C-C bonds in C<sub>5</sub> ring show partial localisation of  $\pi$ -electron density [115]. (263) From Pd(C<sub>4</sub>H<sub>7</sub>)(C<sub>5</sub>H<sub>5</sub>) + PPh<sub>3</sub>, hydrocarbon groups bridge Pd atoms [282].

(d) Polynuclear clusters containing CO, CNR or PR3 ligands











(273) [Rh<sub>13</sub>H<sub>3</sub>(CO)<sub>24</sub>]<sup>2-</sup>

 $\mu$ -CO groups bridge marked edges Terminal CO on each Rh except Rh  $\odot$ ) not shown)



References p. 132



bridging isocyanide carbon sites
 terminal isocyanide carbon sites



(264) Cluster from Re2(CO)10 + KOH/MeOH; H atoms not located directly [118]. (265) Methylation of  $Fe_3(CO)_{11}^{2-}$  with MeSO<sub>3</sub>F, followed by protonation; bridging CO becomes stronger acceptor toward metal centres [78]. (266) Sulphido group bridges all three Fe atoms, with H bridging 2Fe on opposite side of cluster, such that Fe2HS defines a plane [82]. (267) H-atom located above Co3 plane of tetrahedron; all P(OMe)<sub>3</sub> axial, and each Co-Co bond is CO-bridged [155]. (268) From Ru3(CO)12 + Me2NCH2SnMe3; H located bridging shorter Ru-Ru bond, as result of presence of bridging Me2N=C unit also [96]. (269) RuPt2 cluster has all edges bridged by CO; differing Ru-Pt bonds result from asymmetric equatorial CO group on Ru, displaced by interaction with axial PMePh2 ligand [278]. (270) Terminal and bridging H (not located) undergo mutual exchange; positions inferred from geometry of 0s3 cluster (one long 0s-Os bond) [68]. (271) "Butterfly" Co2Pt2 cluster, with Co-Co hinge, one of faces bears 3 CO bridges [275]. (272) Monocapped octahedron, with 10 terminal, 2 edge-bonding, 4 face-bridging CO, and I bridges an edge; one electron pair in cluster antibonding orbital [141]. (273) From  $[Rh_{12}(CO)_{30}]^{2-} + H_2$ ; contains hexagonal close packed Rh atoms, with higher electron density in cluster than found for Rh metal [203]. (274) Fluxional, contains But NC ligands which may bridge face or edge; terminal sites become equivalent as bridging ligands traverse all edges or faces; exceptional reactivity and catalytic activity [252]. (275) From N1(CO)<sub>4</sub> + Na/Hg; TBP arrangement of Ni atoms, with usual  $Ni_3(CO)_3(\mu_2-CO)_3$  unit forming the trigonal plane; cf.

 $[M_2Ni_3(CO)_{13}(\mu_2-CO)_2]^{2-}$  (M = Mo, W) [94]. (278) Pt<sub>3</sub> cluster bridged by 3 Bu<sup>t</sup>NC ligands, which are bent (mean CNC angle, 143°) [233].







(277) Fe3(CO),(C2Ph)(C5H5)









(279)  $Co_4H_4(C_5H_5)_4$ One  $C_5H_5$  group not shown

nem n. 132

(281)  $Ni_4(CO)_4[C_2(CF_3)_2]_3$ Rear  $C_2(CF_3)_2$  group not shown

(277) From  $Fe(C_2Ph)(CO)_2(C_5E_5) + Fe_2(CO)_9$ ; phenylethynyl group interacts with all Fe atoms; one CO forms asymmetric bridge [167]. (278) Intermediate in synthesis of osmiacyclopentadiene complexes; alkyne bonded via  $(2n^1 + n^2)$  interaction with cluster [204]. (279) Slightly distorted Co<sub>4</sub> tetrahedron, with face-bonded H atoms [173]. (280) From (281) + C<sub>8</sub>H<sub>8</sub>; Ni<sub>3</sub>(CO)<sub>3</sub> plane lies between C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub> as 4e-donor and planar, highly delocalised  $n^8-C_8H_8$  ligand; complex fluxional in solution; not frozen out at -90° [103]. (281) From Ni(CO)<sub>4</sub> + C<sub>2</sub>(CF<sub>3</sub>)<sub>2</sub>, originally described as tricarbonyl; alkyne bonded via formal σ-bonds to apical Ni, and by 3-centre bonds to 2 adjacent basal Ni atoms [103]. (f) Complexes containing Transition Metal-Main Group Metal bonds



(282) [Cr(CO](C5H5)]SnCl2





(283) [Mo(SnCl\_3)(CO) (dppe)]

co

(287) Ga[W(CO)(C\_H\_)]



(284) Mo(SnCI3)(CO)2(C2H2)



(282) Distorted tetrahedral Sn, Cr-Sn-Cr 130.2°, Cl-Sn-Cl 95.0° [127]. (283) Irregular capped (by SnCl<sub>3</sub>) octahedral Mo, geometry minimises SnCl<sub>3</sub>, dppe non-bonded repulsions [232]. (284) Comparison with SnCl<sub>2</sub>Ph and SnClPh<sub>2</sub> complexes described earlier [43]. (285) (286) Both complexes contain same Mo<sub>2</sub>(MgBr<sub>2</sub>Mg)<sub>2</sub> skeleton; H not located, but large Mg-Mo-Mg angle (109°) probably results from H atom in Mg-Mo-Mg plane [247]. (287) Individual Ga-W distances apparently significantly different from mean value; which is ca. 0.09Å shorter than sum of covalent radii [205]. (288) Chelate ring in chair conformation, flattened about As...As axis, while GeCl<sub>3</sub> group oriented to minimise interactions with AsMe<sub>2</sub> groups [63]. (289) Mn-Sn bond shorter than in Me or Ph derivatives; equatorial CO groups bent towards Sn.[29].

#### References p. 132

# (293) $(OC)_3Mn(PPh_2)(OCMe)(OCPh)Ir(C_5H_5)$





(295) [Ru(SnMe<sub>3</sub>)(CO)<sub>4</sub>]

(292)  $Mn_2(CO)_{E}(AsMe_2)[C_3F_2(CF_3)(AsMe_2)_{2}]$ 



oC





C II O

(291) Mn2(GeMe2)(CO)9

(288) Mn(GeCl<sub>3</sub>)(CO)<sub>3</sub>[Me<sub>2</sub>As(CH<sub>2</sub>)<sub>3</sub>AsMe<sub>2</sub>]





(290) H2Sn2[Mn(CO)5]4













(296) Ru(GeCl<sub>3</sub>)<sub>2</sub>(CO)(C<sub>6</sub>H<sub>6</sub>)





(297) Ru<sub>2</sub>(SiMe<sub>3</sub>)(CO)<sub>2</sub>(C<sub>2</sub>H<sub>6</sub>SiMe<sub>3</sub>)



(298) Ru<sub>2</sub>(SiMe<sub>3</sub>)(CO)<sub>4</sub>(C<sub>8</sub>H<sub>8</sub>SiMe<sub>3</sub>)

(299) Ru2(CO) [Me2Si(CH2)2SiMe2C8H8]

(290) From  $Sn(C_5H_5)_2 + MnH(CO)_5$ ; shows expected distorted tetrahedral Sn geometry [165]. (291) Planar  $Mn_2Ge_2$  rhombus; bridging Me<sub>2</sub>Ge considered as bridging carbenoid ligand, strengthening and shortening Mn-Mn bond, which is shorter than in  $Mn_2(CO)_{10}$  [70]. (292) From  $cis-(Me_2As)C(CF_3):C(CF_3)(AsMe_2) + Mn_2(CO)_{10}$ ; unusual asymmetric  $n^3-CF_2C(AsMe_2)C(CF_3)(AsMe_2)$  system formed by C-F bond cleavage; Mn-As bonds significantly different [133]. (293) From MeMn(CO)<sub>5</sub> + Ir(CO)(PFh<sub>3</sub>)(C<sub>5</sub>H<sub>5</sub>); 3 bridges involve formal Ir-acetyl and -benzoyl groups, and PFh<sub>2</sub>; no Mn-Ir bond [230]. (294) From  $Sn(n^5-C_5H_5)_2 + Fe_2(CO)_9$ ; complex contains  $Sn(n^1-C_5H_5)_2$  groups, planar  $C_5H_5$  but with diene bond distances; comparison with several related Sn-Fe compounds [223]. (295) Long Ru-Ru bond; unexpected eclipsed CO configuration; significantly non-linear Sn-Ru-Ru-Sn sequence may result from relation of 3-fold (SnMe<sub>4</sub>) and 4-fold [Ru(CO)<sub>4</sub>] symmetries to equalise Me-CO interactions [112]. (296) Eclipsed conformation, planar C<sub>6</sub> ring; discussion in terms of similarities between CO and GeCl<sub>3</sub> electronically [32]. (297) From  $[Ru(CO)_4(SiMe_3)]_2 +$ cycloheptatriene; one SiMe<sub>3</sub> group migrates to ring which is attached via  $\eta^3$  and  $\eta^4$  bonds to the two metal atoms [153]. (298) Ring-opening of C<sub>6</sub>H<sub>8</sub> and migration of SiMe<sub>3</sub> gives  $[\eta^4 + (\eta^4 + \eta^1)]$  ligand [154]. (299) From Ru[SiMe<sub>2</sub>(CH<sub>2</sub>)<sub>2</sub>SiMe<sub>2</sub>](CO)<sub>4</sub> + C<sub>8</sub>H<sub>8</sub>; migration of one SiMe<sub>2</sub> from Ru to C<sub>8</sub>H<sub>8</sub> with formation of  $(\eta^3 + \eta^2)$  ligand [166].

(g) Polynuclear clusters containing Main Group elements



(300) MnFe(PPh2)(CO)8



(304) RuH<sub>3</sub>(CMe)(CO)<sub>a</sub>



(300) Reference [166]. (301) Planar Re<sub>2</sub>In<sub>2</sub> ring with Re-Re bond [157]. (302) From  $PhC_2P(C_6F_5)_2 + Fe_2(CO)_9$ ; new P-heterocycle functions as symmetrical n<sup>2</sup>, 3e-bridging ligand; bond parameters indicate ligand is a phosphoniadene rather than an ylide [283]. (302a) From nucleophilic attack on  $Fe_2(PPh_2)(C_2Ph)(CO)_6$  by P(OEt)<sub>3</sub>, formulated as phosphoniumbetaine complex [238]. (303) Unusual cluster from  $Fe_3(CO)_{12}$  + 2-mercaptopyridine, contains o-metallated pyridine nucleus bridging







(310) Pt3Ph(PPh2)3(PPh3)2



(307) Co452(CO)10





oc

(303) [Fe2(CO)6(C5H4N)](S)[Fe2(CO)6(SC5H4N)]



(302) Fe2(CO) [P(C6F5)2] [Ph2C4P(C6F5)2]









0

(305) Co3(COBCI2NEt3)(CO)

(308) Rh<sub>8</sub>C(CO)<sub>19</sub> © face-bridging CO edges marked+bridged by CO

ġ

70

2 Fe atoms, and S tetrahedrally bridging 4 Fe atoms [192].

(304) Symmetrically-bridging H on opposite of Ru<sub>3</sub> plane from CMe, with Ru-H 1.72(7)Å, Ru-H-Ru 112(7)°; NMR values recalculated to give Ru-H 1.81Å Ru-H-Ru 103° [71]. (305) From Co<sub>2</sub>(CO)<sub>8</sub> + Cl<sub>3</sub>BNEt<sub>3</sub> [132]. (305) From Co<sub>2</sub>(CO)<sub>8</sub> + Zn, followed by PhPCl<sub>2</sub>; CO-bridged Co-Co bond shorter than unbridged bond; comparison with (306) indicates stronger P...P attractions [P···P 2.544(3), S···S 2.74(2)Å] [193]. (307) From Co<sub>2</sub>(CO)<sub>8</sub> + S; S coordinates to 4 Co, with lone pair at apex [67]. (308) Rh<sub>6</sub>C skeleton shown; 2 face-bonding, 6 edge-bonding, 11 terminal CO groups; probably formed by insertion of 2 Rh(CO)<sub>2</sub><sup>+</sup> units into Rh<sub>6</sub>C(CO)<sub>15</sub><sup>2-</sup> anion [180]. (309) (310) Cluster complexes obtained by by continued refluxing of Pt(PPh<sub>3</sub>)<sub>4</sub> in benzene; cleavage of P-C bond in (309) similar to e.g. pyrolysis of Os<sub>3</sub>(CO)<sub>9</sub>(PPh<sub>3</sub>)<sub>3</sub> [297].

HYDRIDE COMPLEXES

References p. 132



 $[M_2H_3\{MeC(CH_2E)_3\}_2]^+$ (311) M = Fe, E = PPh<sub>2</sub> (312) M = Co, E = AsPh<sub>2</sub>



(317) mer-IrH3(PPh3)3





(316) COH [P(C6H4PPh2)3]





(318) [(Ph\_P)(H)Ir(SPh)CIIr(H)(PPh\_)2]CIO4

(319) trans-PtH<sub>2</sub>(PCy<sub>3</sub>)<sub>2</sub> H-atom positions not determined



(320) CoH(BH4)(PCy3)2

(311) (312) In both complexes, metal atoms bridged by 3H [1.83(Fe), 1.78Å(Co)] in shared octahedral face; metal-metal distances suggest multiple bond order [307]. (313) Comparison with N1(np<sub>3</sub>)<sup>+</sup>; geometry of complexes imposed by tripod ligands, and virtually unaffected by H ligand; Co-H 1.45(5)Å [301]. (314) (315) (316) Systematic study of hydride complexes: Co-H 1.43(6) (314), 1.53(15) (315), 1.60(16)Å(316); all TBP structures, with axial H [302, 303, 304, 305]. (317) Very distorted octahedron, with P-Ir-P 103° (cis), 207° (trans); Ir-H 1.58-1.62Å, IrH<sub>3</sub> not coplanar [306]. (318) From [IrHC1(SPh)(PFh<sub>3</sub>)<sub>2</sub>]<sub>2</sub> + AgClO<sub>4</sub>; no Ir-Ir bond, H not located [308]. (319) Two modifications, both refined, H not located [299]. (320) Paramagnetic; short Co-H, 1.34(9)Å and Co-B, 2.13(1)Å; borohydride attached via CoH<sub>2</sub>BH<sub>2</sub> bridge, Co-H cz. 1.84Å [300].

See also: 16, 138, 147, 191, 229, 230, 264, 265, 266, 267, 268, 270, 273, 279, 285, 286, 304.


NITROSYLS (Continued)

(321)(322) Distorted octahedra, equatorial Br; short N-O bond in (322) probably disordered, both considered to have NO<sup>+</sup> ligands [310]. (323) Distorted trigonal pyramid, NO ligands bent towards each other [311]. (324) Square pyramidal Fe with apical NO [318]. (325) Comparison with aryldiazo complex (343); both N ligands good m acceptors, but NO is the better [17]. (326) Complements structure of C<sub>6</sub>H<sub>6</sub> solvate reported last year; significant differences in P-Ru-P, Ru-N-O angles, and different conformation of PPh3 groups [316]. (327) Very similar to Ru complex (hemibenzene solvate); extensive Os-N, N-O multiple bonding [14]. (328) Contains both linear and bent NO groups; hydroxyl hydrogen not located [317]. (329) 5-Coordinate Co, equatorial NO [312]. (330) 6-Coordinate Co, bent CoNO group, i.e. change from (329) to (330) represents formal 2e reduction of NO by addition of ligand [312]. (331) Distorted square pyramid, apical NO (bent) disordered; isomorphous and isostructural with Ir complex, but differs from Co complex [313]. (332) Rh geometry intermediate between tetrahedral and square planar; comparison with other isoelectronic complexes containing Fe, Ru, Os, Co<sup>+</sup> or Ir<sup>+</sup> [315]. (333)(334) Axial Ir-X shorter than equatorial Ir-X bond by 0.05(Cl), 0.06A(Br) [319]. (335) From [Ir(NO)(PPh<sub>3</sub>)]<sub>2</sub>0 + HgCl<sub>2</sub>; Ir-O-Ir bridge retained, but Ir-Ir bond oxidatively cleaved [314]. (336) From Ni[P(OCH2) 3CMe]4 + NOBF4; distorted tetrahedral Ni [319a].

See also: 15, 170.

DINITROGEN, ARYLDIAZO, ARYLDIIMINE AND RELATED COMPLEXES



Re-N-N-Mo-N-N-Re chain, with Re-N 1.75, Mo-N 1.99, N-N 1.28Å [321]. (339) Distorted pentagonal bipyramid, N=N 1.37(2), Mo-N 1.715(16)Å;

References p. 132

comparison with (342) shows decrease in M-N length accompanies increase in N-N distance [325]. (340)(341) From photochemical reactions of Mo(N<sub>2</sub>)<sub>2</sub>(dppe)<sub>2</sub> + MeI or CyI to give alkyldiazenido complexes; singly-bent Mo-N-N system [327]. (342) N=N 1.32(2), W-N 1.77Å; compare (339) [325]. (343) Comparison with nitrosyl (325); aryldiazo ligand singly bent, with Ru-N 1.784, N=N 1.158Å, Ru-N-N 171.9°, N-N-C 137.1° [17]. (344) Doubly-bent Rh-N-N-Ph formed by oxidative addition of  $PhN_2^+$  to  $Rh^I$ ; comparison with [Rh(NO)CIL]<sup>+</sup>, and further discussion of NO<sup>+</sup>/PhN<sub>2</sub><sup>+</sup> analogy [326]. (345) Disordered, leads to high R value; doubly-bent ArN<sub>2</sub>Pt unit, represents another model compound [see (346)], with N=N 1.17(3)Å [323]. (346) Model compound in system proposed for reduction N<sub>2</sub>+NH<sub>3</sub>; N-N 1.436(11)Å, bond order 1, as expected for hydrazine complex [324].

See also: 10, 14, 16, 26, 65, 170.

BINARY TRANSITION METAL-TERTIARY PHOSPHINE COMPLEXES





(347) [Ir(PMePh<sub>2</sub>)<sub>4</sub>]BF<sub>4</sub>



F = B F F F F  $Ph_3P$   $PPh_3$   $PPh_3$ 

(349) Pt(PCy3)

(347) Very distorted square planar Ir, to reduce ligand-ligand interactions; Ir shielded from attack by reagents such as  $O_2$  [330]. (348) Tetrahedral, short Ni-P [2.093(3)Å] because of  $d_{\pi}-d_{\pi}$ back-bonding to P [328]. (349) Closely similar to Pd complex, P-Pt-P angle 160.5(2)°; compare with *trans*-dihydride (318) [329]. (350) Weakly coordinated BF<sub>4</sub> *via* Cu-F-BF<sub>3</sub>, Cu geometry trigonally distorted tetrahedral; absolute configuration RSS [331].

#### STRUCTURES ORDERED BY ELEMENT

| Ti | 50, 143, 145, 146, 149, 168, 175, 207, 208, 228.                     |
|----|----------------------------------------------------------------------|
| v  | 144.                                                                 |
| Cr | 1, 3, 4, 5, 44, 49, 122, 191, 193, 194, 195, 196, 199, 282.          |
| Ma | 10, 23, 24, 32, 45, 68, 70, 71, 133, 134, 155, 157, 158, 159, 160,   |
|    | 234, 235, 240, 261, 288, 289, 290, 291, 292, 293, 300.               |
| Fe | 14, 39, 52, 76, 77, 80, 117, 120, 121, 123, 124, 135, 139, 161, 162, |
|    | 163, 164, 165, 166, 182, 186, 187, 188, 189, 190, 210, 218, 236,     |
| ÷  | 241, 242, 245, 246, 248, 249, 250, 251, 252, 253, 254, 256, 258,     |
|    | 259, 265, 266, 267, 277, 294, 300, 302, 302a, 303, 311, 323, 324.    |
| Co | 40, 41, 43, 43, 54, 55, 56, 57, 101, 140, 183, 184, 216, 222, 223,   |
|    | 226, 241, 242, 243, 244, 267, 271, 279, 305, 306, 307, 312, 313,     |
|    | 314, 315, 316, 320, 329, 330.                                        |

| 78 |                                                                      |
|----|----------------------------------------------------------------------|
| NL | 109, 110, 113, 119, 128, 129, 219, 243, 244, 246, 274, 275, 280,     |
| •  | 281, 336, 348.                                                       |
| Cu | 18, 215, 350.                                                        |
| Zr | 176, 209.                                                            |
| Nb | 131, 147, 150.                                                       |
| Мо | 6, 7, 8, 19, 20, 21, 37, 38, 100, 115, 132, 148, 151, 152, 153, 169, |
|    | 170, 179, 197, 200, 205, 206, 231, 232, 233, 283, 284, 285, 286,     |
|    | 337, 338, 339, 340, 341.                                             |
| Tc | 11, 12-                                                              |
| Ru | 26, 33, 34, 36, 46, 53, 118, 136, 137, 167, 198, 201, 257, 260, 268, |
|    | 269, 295, 296, 297, 298, 299, 304, 325, 326, 343.                    |
| Rh | 2, 17, 27, 28, 35, 81, 82, 83, 102, 103, 104, 125, 126, 171, 185,    |
|    | 202, 204, 213, 247, 255, 272, 273, 308, 331, 332, 344.               |
| Pd | 47, 59, 60, 63, 73, 74, 75, 114, 116, 224, 237, 262, 263             |
| Ag | 211, 212, 213.                                                       |
| ЧЪ | 141.                                                                 |
| H£ | 177.                                                                 |
| Та | 48, 51, 178.                                                         |
| w  | 9, 22, 31, 154, 180, 181, 229, 230, 287, 342.                        |
| Re | 13, 25, 156, 240, 264, 301, 321, 322, 338.                           |
| 0s | 15, 16, 270, 278, 327, 328.                                          |
| Ir | 29; 30, 58, 72, 84, 105, 106, 107, 108, 127, 138, 192, 203, 214,     |
|    | 293, 317, 318, 333, 334, 335, 347.                                   |
| Pt | 61, 62, 64, 65, 66, 67, 69, 78, 85, 86, 87, 88, 89, 90, 91, 92, 93,  |
|    | 94, 95, 96, 97, 98, 99, 111, 112, 130, 217, 220, 221, 225, 226, 227. |
|    | 238, 239, 269, 271, 276, 309, 310, 319, 345, 346, 349.               |
| Au | 79.                                                                  |
| U  | 142, 172, 173, 174.                                                  |
|    |                                                                      |
|    |                                                                      |

## TABULATED STRUCTURAL DATA (TABLES 1 AND 2)

As in previous years, some structural data of general interest has been collected. Such data, presented in Tables 1 and 2, includes metal-metal bond lengths, and parameters of coordinated NO ligands.

SUMMARY TABLES 3 AND 4

These Tables list most complexes whose structures have been reported during 1975, together with a small number reported during the previous year. The arrangement (in columns) is as follows:

- 1. Reference number, referring to the structural diagram in the preceding section.
- Molecular formula, arranged in order of increasing C and H content.
   Other elements follow in alphabetical order of symbol. Ionic complexes are listed under the <u>relevant</u> ion, e.g. K[PtCl<sub>3</sub>(C<sub>2</sub>H<sub>4</sub>)].H<sub>2</sub>O appears as C<sub>2</sub>H<sub>4</sub>Cl<sub>3</sub>Pt<sup>-</sup>.K<sup>+</sup>.H<sub>2</sub>O, and solvated molecules, if present, are listed last.
- Structural formula, listed as far as is practicable, with metal atoms first, followed by attached ligand in increasing degree of electron donation. Thus, for some commonly found groups, the order is: M, H, M' (Main Group or Transition Metal)

X (monodentate anionic ligand), R (σ-alkyl, aryl, etc.)

 $\eta^1$ -ligands, ER<sub>3</sub>(E = N, P, As, Sb), SR<sub>2</sub>, acac (and anionic bidentates), NO  $\eta^2$ -ligands (olefin, acetylene),

n<sup>3</sup>-ligands (allyl, enyl),

n<sup>4</sup>-ligands (diene, cyclo-diene),

n<sup>5</sup>-ligands (dienyl, cyclo-dienyl),

 $\eta^6$ -ligands (triene, arene),

n<sup>7</sup>-ligands (cyclo-trienyl),

η<sup>8</sup>-ligands (cyclo-tetraene)

Of necessity, this order cannot be followed in all cases, particularly with cluster complexes.

References p. 132

- 4-8. Crystal data, comprising crystal class, space group, Z and unit cell dimensions.
- 9-11. Number of *intensity data* (observed reflections) used in structural refinement, and lowest R value reported (as **7**). In an increasing number of cases, conventional (R) and weighted  $(R_w)$  values are being quoted; where appropriate, both are listed here.
- 12. Miscellaneous notes, often referring to low temperature determinations, etc. In this column, a number indicates the absolute temperature (K) at which data was collected, or cell constants determined. Other abbreviations used:
  - CD Cell data only given
  - ND Neutron diffraction study
  - SD Structural diagram only, which may be accompanied
    - by some bond parameters.

Other comments are indicated in appropriate footnotes.

 Reference number relating to the list of references at the end of the Survey.

| Bond  | Length (Å)         | Complex                                                                                                                 |                                        | Structure | Ref      |
|-------|--------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|----------|
| Cr-Sn | 2.697(3)           | [Cr(C0) 3(C5H5)]2SnC12                                                                                                  |                                        | (282)     |          |
| Mo-Mg | 2.737(6)           | {MoH(C <sub>5</sub> H <sub>5</sub> ) <sub>2</sub> [MB <sub>2</sub> Br <sub>2</sub> (OEc <sub>2</sub> )Cy]} <sub>2</sub> | Mo-Mg(Cy)                              | (285)     | 5        |
|       | 2.76(3)<br>2.81(3) | {                                                                                                                       | Mo−Mg(Pr <sup>1</sup> )<br>Mo-Me(OR+_) | (286)     | <b>N</b> |
|       | 2.853(7)           | {MoH(C <sub>5</sub> H <sub>5</sub> ) <sub>2</sub> [M <sub>82</sub> Br <sub>2</sub> (OEt <sub>2</sub> )Cy]} <sub>2</sub> | Mo-Mg(OEt <sub>2</sub> )               | (285)     | 2        |
| Mo-Sn | 2.720(1)           | Mo (SnC1 3) (C0) 2 (C7H7)                                                                                               |                                        | (284)     |          |
|       | 2.729(4)           | [Mo(SnC1 <sub>3</sub> )(CO)4(dppe)] <sup>†</sup>                                                                        |                                        | (283)     | 7        |
| Mo-Mo | 2.448(1)           | [Mo(C0)2(C5H5)]2                                                                                                        |                                        | (232)     | 1        |
|       | 2.920(1)           | {Mo (NBu <sup>t</sup> ) (S) (C <sub>5</sub> H <sub>5</sub> ) ] <sub>2</sub>                                             |                                        | (233)     | ч        |
|       | 3.161              | {MoI(CO)4]2                                                                                                             |                                        | (231)     | ŝ        |
| W-Ga  | 2.716-<br>2.758(3) | [W(CO) <sub>3</sub> (C <sub>5</sub> H <sub>5</sub> ) ] <sub>3</sub> Ca                                                  |                                        | (287)     | 5        |
| M-W   | 3.391(1)           | [W <sub>2</sub> H(co) <sub>10</sub> ] <sup>-</sup>                                                                      | bent                                   | (230)     |          |
|       | 3.504(1)           | [W <sub>2</sub> H(CO) <sub>10</sub> ]                                                                                   | linear                                 | (229)     | -        |
| Hn-S1 | 2.360(7)           | Mn(S1F <sub>3</sub> ) (CO) <sub>5</sub>                                                                                 |                                        | (ED)      |          |
|       | 2.407(5)           | Mn(S1H 3) (CO) 5                                                                                                        |                                        | (ED)      |          |
| M-Ge  | 2.381(3)           | <i>fao</i> -hh (GeCl <sub>3</sub> ) (СО) <sub>3</sub> [Me2AB(CH2) <sub>3</sub> ABMe2]                                   |                                        | (288)     |          |
|       | 2,432,<br>2,477(2) | Mn2(GeMe2) (CO)9                                                                                                        |                                        | (291)     |          |
|       | 2.487(2)           | Mn (Geli 3) (CO) 5                                                                                                      | •                                      | (ED)      |          |

;

1

I ı

۱

| He-P $2.27(6)$ MnE(FPh <sub>2</sub> ) (CO)8         (COP)1r(CgH <sub>2</sub> )         (CO)3         MnE(FPh <sub>2</sub> ) (CO)8         MnS         MnS <th< th=""><th>Mn-Sn</th><th>2.590(av.)<br/>2.675,<br/>2.730(5)</th><th>Mn (Sncl 3) (C0) 5<br/>[Mn(C0) 5] 45n2H2</th><th></th><th>(289)<br/>(290)</th><th>29<br/>165</th><th>82</th></th<>                                                                                                                                                                                                                                                                        | Mn-Sn   | 2.590(av.)<br>2.675,<br>2.730(5)               | Mn (Sncl 3) (C0) 5<br>[Mn(C0) 5] 45n2H2                                                                                     |                                           | (289)<br>(290)                   | 29<br>165                   | 82 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|-----------------------------|----|
| Mr-As $2.455$ ,<br>2.507(4)         Mr2(AsMe2)3(C0)6(G4F5)         133           Mr-Mn $2.5103(24)$ Mr2(C0)7(N1C(CF3)2)2         102           Mn-Mn $2.5133(24)$ Mr2(C0)7(N1C(CF3)2)2         102           Xibit $2.554(2)$ Mr2(C0)7(N1C(CF3)2)2         102           Xibit $2.533(2)$ Mr2(C0)7(N1C(CF3)2)2         103           Xibit $2.934(6)$ Mr2(C0)5(G4pm)2         (231)         103           Xibit $2.394(6)$ Mr2(C0)5(G4pm)2         (231)         103           Xibit $2.934(6)$ Mr2(C0)5(G4pm)2         (231)         105           Mn-Re $2.972(1)$ (00)5/Mr8(C0)4(0)         (001)         105           Mn-Fe $2.943(2)$ Mr6(C0)4(C0)6(C4F5)         0.0000         106           Mn-Fe $2.943(2)$ Mr6(C0)4(C0)6(C0)6(C0)6(C0)6(C0)6(C0)6(C0)6(C0)6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min-P   | 2.257(6)<br>2.348(3)                           | Mife (PPh <sub>2</sub> ) (CO) <sub>B</sub><br>(OC) 3Mn(PPh <sub>2</sub> ) (COMe) (COPh) IF (C <sub>5</sub> H <sub>5</sub> ) |                                           | (300)<br>(293)                   | 166<br>230                  |    |
| Hn-Hn         2.5183(24)         Mn <sub>2</sub> (C07) <sub>7</sub> (N:C(C7) <sub>2</sub> ) <sub>2</sub> (234)         102           2.854(2)         Mn <sub>2</sub> (C00) <sub>9</sub> (231)         70           2.934(6)         Mn <sub>2</sub> (C05) <sub>6</sub> (4pm) <sub>2</sub> (231)         70           2.934(5)         Mn <sub>2</sub> (C05) <sub>6</sub> (4pm) <sub>2</sub> (231)         70           3.045(2)         Mn <sub>2</sub> (C05) <sub>6</sub> (4pm) <sub>2</sub> (231)         70           4n-Re         2.972(1)         (005) <sub>3</sub> MnRe(00) <sub>1</sub> (Me(0Ne))         (240)         80           Mnir         3.543(2)         Mn <sub>2</sub> (C0) <sub>6</sub> (1me(C0) <sub>5</sub> ) <sub>2</sub> (240)         80           Mnir         3.543(2)         (005) <sub>3</sub> Mn(PPh <sub>2</sub> )(C0) <sub>8</sub> 0         105           Mnir         3.543(2)         (005) <sub>3</sub> Mn(PPh <sub>2</sub> )(C0) <sub>8</sub> 0         105           Mnir         3.543(2)         (005) <sub>3</sub> Mn(PPh <sub>2</sub> )(C0) <sub>8</sub> 0         105           Re-In         2.736         (005) <sub>3</sub> Mn(PPh <sub>2</sub> )(C0) <sub>9</sub> 0         105           Re-In         2.734         (005) <sub>3</sub> Inte(C0) <sub>5</sub> I <sub>2</sub> In-Re(C0) <sub>4</sub> I <sub>2</sub> 230           2.037(3)         [Re <sub>4</sub> H <sub>4</sub> (C0) <sub>15</sub> I <sup>2</sup> -         In-Re(C0) <sub>4</sub> I <sub>2</sub> 231         137           Re-Re         3.032(8)         [Re <sub>4</sub> H <sub>4</sub> (C0) <sub>15</sub> I <sup>2</sup> -         In-Re(C0) <sub>4</sub> I <sub>12</sub> | Mn-As   | 2.455,<br>2.507(4)                             | Mn2(ABMe2) 3(CO)6(C4F5)                                                                                                     |                                           | (292)                            | 133                         |    |
| Mn-Re         2.972(1)         (OC) 5 MRe (CO) 4 [CMe (OMe)]         (240)         80           Mn-Fe         2.825(5)         MnFe (FPh2) (CO)8         (COPh) Ir (Csh5)         (300)         166           MnIr         3.543(2)         (OC) 3 Mn (PFh2) (CO)8         (COPh) Ir (Csh5)         no bond         (293)         230           MnIr         3.543(2)         (OC) 3 Mn (PFh2) (CO)8         Ine (CO) 5 (CO)8         Ine (CO) 1 (CS)8         Ine                                                                                                                                                                                                                                                                         | Han-Han | 2.5183(24)<br>2.854(2)<br>2.934(6)<br>3.045(2) | Mn2(CO)7[N;C(CF3)2]2<br>Mn2(GeMe2)(CO)9<br>Mn2(CO)5(dppm)2<br>Mn2(CO)5(Calla)                                               |                                           | (234)<br>(291)<br>(235)<br>(261) | 102<br>70<br>290,291<br>105 |    |
| Mn-Fe2.825 (5)MnFe (FFh <sub>2</sub> ) (CO) <sub>8</sub> (CO) <sub>8</sub> (300)166Mntr3.543 (2)(0C) $_{3}$ Mr (FPh <sub>2</sub> ) (COHe) (COPh) Ir (C <sub>5</sub> H <sub>5</sub> )(301)230Re-In2.738Re_2 (CO) $_{8}$ [TnRe (CO) $_{5}$ ]In-Re (CO) $_{5}$ (301)157Re-Re3.032 (8)[Re_4H_4 (CO) 1_5]^2-In-Fre (CO) $_{4}$ ](301)1163.192,3.1169non-bridged, Re_3(264)1163.222 (1)Re_2 (CO) $_{8}$ [TnRe (CO) $_{5}$ ]H-bridged, Re_3(301)1573.211 (8)3.211 (8)[Re_4H_4 (CO) 1_5]^2-H-bridged, Re_6(264)1183.228 (8)[Re_4H_4 (CO) 1_5]^2-H-bridged, Re_6(264)11872.651,[(C5H5) 25RFe(CO)_4]2[H-bridged, Re-Fe_3(294)22372.6570 (1)2.6510, 122.6570 (1)2.23223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mn-Re   | 2.972(1)                                       | (0C) <sub>5</sub> MnRe (CO) <sub>4</sub> [CMe (OMe) ]                                                                       |                                           | (240)                            | 80                          |    |
| Mn1r $3.543(2)$ (OC) $_{3}Mn$ (PPh <sub>2</sub> ) (COMe) (COPh) Ir (C <sub>5</sub> H <sub>5</sub> )         no bond         (293)         230           Re-In $2.738$ Re <sub>2</sub> (CO) $_{6}$ [InRe (CO) $_{5}$ ]         In-re(CO) 5         (301)         157           Re-In $2.734$ ,         Re <sub>2</sub> (CO) $_{6}$ [InRe (CO) $_{5}$ ]         In-re(CO) 5         (301)         157           Re-Re $3.032(6)$ [Re <sub>4</sub> H <sub>4</sub> (CO) 15] <sup>2-</sup> non-bridged         (264)         118           Re-Re $3.032(6)$ [Re <sub>4</sub> H <sub>4</sub> (CO) 15] <sup>2-</sup> non-bridged, Re <sub>3</sub> 116 $3.192$ , $3.211(6)$ Re <sub>2</sub> (CO) $_{6}$ [InRe (CO) $_{5}$ ]         H-bridged, Re <sub>3</sub> 116 $3.211(6)$ Re <sub>2</sub> (CO) $_{6}$ [InRe (CO) $_{5}$ ]         H-bridged, Re <sub>3</sub> 116 $3.228(1)$ Re <sub>2</sub> (CO) $_{6}$ [InRe (CO) $_{5}$ ]         H-bridged, Re <sub>3</sub> (264)         118 $7.232(1)$ Re <sub>2</sub> (CO) $_{15}$ ] $(C_{5}H_{5})_{2}$ Suff (CO) $_{12}$ ] $(C_{5}H_{5})_{2}$ $(201)$ $157$ $7.651$ , $(C_{5}H_{5})_{2}$ $(C_{5}H_{5})_{2}$ $(C_{5}H_{5})_{2}$ $(C_{5}H_{5})_{2}$ $(C_{5}H_{5})_{2}$ $(C_{5}H_{5})_{2}$ $(C_{5}H_{5})_{2}$ $(C_{5}H_{5})_{2}$ $(C_{5}H_{5})_{2}$ <                                                                                                                                                                                                                                                                                                                                                                                                               | Mn-Fe   | 2.825(5)                                       | ₩nFe(PPh₂)(C0)8                                                                                                             |                                           | (300)                            | 166                         |    |
| Re-In2.738Re2(C0)6[InRe(C0)5]2In-Re(C0)5(301)1572.754,2.807(1)2.754,In-[Re(C0)4]21182.3032(8)[Re4H4 (CO)15]2^-non-bridged(264)118Re-Re3.032(8)[Re4H4 (CO)15]2^-H-bridged, Re3(264)1183.211(8)3.211(8)Re2(C0)6[InRe(C0)5]2H-bridged, Re3(301)1573.232(1)Re2(C0)6[InRe(C0)5]2H-bridged, Re-Re3(264)1187e-Sn2.651,[(C5H5)2SnFe(C0)4]2H-bridged, Re-Re3(294)223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MnIr    | 3.543(2)                                       | (OC) <sub>3</sub> Mn(PPh <sub>2</sub> ) (COMe) (COPh) Ir (C <sub>5</sub> H <sub>5</sub> )                                   | no bond                                   | (263)                            | 230                         |    |
| Re-Re         3.032(8)         [Re4H4 (CO)15] <sup>2-</sup> non-bridged         (264)         118           3.192,         3.192,         H-bridged, Re3         (261)         118           3.211(8)         Re2(C0)8[InRe(C0)5]2         H-bridged, Re3         (301)         157           3.222(1)         Re2(C0)8[InRe(C0)5]2         H-bridged, Re-Re3         (264)         118           7e-Sn         2.651,         [(C5H5)2SnFe(C0)4]2         (294)         223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Re-In   | 2.738<br>2.754,<br>2.807(1)                    | Re2 (CO) 8 [ InRe (CO) 5 ] 2                                                                                                | In-Re(CO) 5<br>In-[Re(CO)4]2              | (10£)                            | 157                         |    |
| 3.232(1)       Re2(CO) 8 [InRe(CO) 5]2       (301)       157         3.288(8)       [Re4H4,(CO) 15] <sup>2-</sup> H-bridged, Re-Re3       (264)       118 <b>Fe-Sn</b> 2.651,       [(C5H5) 2SnFe(CO)4]2       (294)       223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ReRe    | 3.032(8)<br>3.192,<br>3.211(8)                 | [Re4H4 (CO)15] <sup>2-</sup>                                                                                                | non-bridged<br>H-bridged, Re <sub>3</sub> | (264)                            | 118                         |    |
| Pe-Sn         2.651,         [(C5H5)2SnFe(C0)4]2         223           2.670(1)         2.670(1)         223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 3.232(1)<br>3.288(8)                           | Re2 (CO) 8 [InRe(CO) 5] 2<br>[Re4H4 (CO) 15] <sup>2-</sup>                                                                  | H-bridged, Re-Re3                         | (301)<br>(264)                   | 157<br>118                  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fe-Sn   | 2.651,<br>2.670(1)                             | [(C5H5)2SnFe(C0)4]2                                                                                                         |                                           | (294)                            | 223                         |    |

| 02 <b>a)</b> 238                                        | 22) 28                            | 9T · (0C            | 03) 19                                 | 13 13                                     | 48) 24               | 58) 21                                                                                 | 54) 24                                | 77) <u>1</u>            | 36) 9                                                            | <b>J3) 1</b>                                     | (8)                                                                              | 53) (                                   | 3 <b>1</b> ) 19                        | 11) 1(                  | 56)                                                    | 10 10                                                                | 2 <b>a)</b> 23                | 56) 8                                                  | 22) 28                           | 56) 12                                                                | 59) 18                              |
|---------------------------------------------------------|-----------------------------------|---------------------|----------------------------------------|-------------------------------------------|----------------------|----------------------------------------------------------------------------------------|---------------------------------------|-------------------------|------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|-------------------------|--------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|--------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------|-------------------------------------|
| (30                                                     | (30                               | (30                 | ře <sub>4</sub> S (30                  | (24                                       | (24                  | (25                                                                                    | (25                                   | CO-bridged (27          | (23                                                              | S-bridged (30                                    | (21                                                                              | (25                                     | py-bridged (30                         | (27                     | (26                                                    | (25                                                                  | (30                           | H,S-bridged (26                                        | (30                              | (25                                                                   | (25                                 |
| Fe2(FPh2)(C0) <sub>6</sub> {C[P(OEt) <sub>3</sub> ]CPh] | Fe2[F(C6F5)2](C0)6[(C6F5)2FC4Ph2] | FeMn (FPh 2) (CO) B | [Fe2(C0)6(C5H4N)](S)[Fe2(C0)6(SC5H4N)] | Fe2(CO) <sub>6</sub> (C2Bu <sup>E</sup> ) | Fe2(CO)6(C27H24N204) | Fe <sub>2</sub> (CO) <sub>5</sub> [(HC <sub>2</sub> Bu <sup>E</sup> ) <sub>3</sub> CO] | <b>Fe</b> 2(CO) <sub>6</sub> (C4,Ph4) | Fe 3(CO) 7(C2Ph) (C5H5) | Fe2(CO) 3(CNBu <sup>1</sup> ) (C <sub>5</sub> H <sub>5</sub> ) 2 | $[Fe_2(CO)_6(C_5H_4N)](S)[Fe_2(CO)_6(SC_5H_4N)]$ | 1,6-(C5H5)2-1,6,2,3-Fe <sub>2</sub> C <sub>2</sub> B <sub>6</sub> H <sub>0</sub> | <b>Fe2(C0)</b> [C4, (CF3), C0] (C5H5) 2 | [Fe2(CO)6(C5H4N)](S)[Fe2(CO)6(SC5H4N)] | Fe 3(C0) 7(C2Ph) (C5H5) | Pe <sub>3</sub> H(CO) <sub>9</sub> (SPr <sup>1</sup> ) | Fe <sub>2</sub> (CO) <sub>6</sub> (C <sub>8</sub> H <sub>10</sub> O) | Fe2(PPh2)(CO)6(C[P(OEt)3]CPh) | Fe <sub>3</sub> H(C0) <sub>9</sub> (SPr <sup>1</sup> ) | Fe2[PC6F5)2](C0)6[(C6F5)2PC4Ph2] | Fe <sub>2</sub> (CO) <sub>6</sub> (C <sub>10</sub> H <sub>14</sub> O) | $Fe_{2}(CO)_{5}(C_{5}H_{4}CPh_{2})$ |
| 2.206(4),<br>2.226(3)                                   | 2.212(4),<br>2.233(3)             | 2.239(6)            | 2.236-<br>2.263(2)                     | 2,316(4)                                  | 2.459                | 2.496(2)                                                                               | 2,505(1)                              | 2.524(1)                | 2.524(3)                                                         | 2,532(1)                                         | 2.571(1)                                                                         | 2,590(2)                                | 2,598(1)                               | 2.634(1)                | 2.640,<br>2.653(2)                                     | 2.642(1)                                                             | 2.671(2)                      | 2.678(2)                                               | 2.697(2)                         | 2.740(3)                                                              | 2,765(2)                            |
| Fe-P                                                    | ••••                              |                     | Fe-S                                   | Fe-Fe                                     |                      |                                                                                        |                                       |                         |                                                                  |                                                  |                                                                                  |                                         |                                        |                         |                                                        |                                                                      |                               |                                                        |                                  |                                                                       |                                     |

|       | 2.804(1)             | Fe2(CO)5(FEt3)(C10H12)                                                                                        |             | (252)          | 061        | 84 |
|-------|----------------------|---------------------------------------------------------------------------------------------------------------|-------------|----------------|------------|----|
| Fe-Co | 2.520(1)<br>2.545(1) | (C <sub>5</sub> H <sub>5</sub> ) FeCo (CO) 4 (nbd)<br>(C <sub>5</sub> H <sub>5</sub> ) FeCo (CO) <sub>6</sub> |             | (242)<br>(241) | 130<br>69  |    |
|       | 2.560(2)             | HFeCo <sub>3</sub> (CO) <sub>9</sub> [P (OMe) <sub>3</sub> ] <sub>3</sub>                                     |             | (267)          | 155        |    |
| Fe-N1 | 2.420(4)             | (C5H5) N1Fe(C0) 3(HC2FPh3)                                                                                    |             | (346)          | 225        |    |
| Ru-C  | 2.082(12)            | Ru <sub>3</sub> H <sub>3</sub> (CMe)(CO) <sub>9</sub>                                                         |             | (304)          | 11         |    |
| Ru-S1 | 2.437(5)             | Ru2 (S1Me3) (CO) 4 (C6H6S1Me3)                                                                                |             | (298)          | 154        |    |
|       | 2.452(3)<br>2.458(4) | Ru2 (51Me 3) (CO) 5 (C7H651Me 3)<br>Ru2 (CO) 5 [MeS1 (CH2) 2 (51Me2) C6H8]                                    |             | (297)<br>(299) | 153<br>154 |    |
| Ru-Ge | 2.408(2)             | Ru(GeCI 3) 2 (CO) (C <sub>6</sub> H <sub>6</sub> )                                                            |             | (296)          | 32         |    |
| Ru-Sn | 2.691(1)             | [Me <sub>3</sub> SnRu(CO) <sub>4</sub> ] <sub>2</sub>                                                         |             | (295)          | 112        |    |
| Ru-Ru | 2.7997(5)<br>2.828   | Ru <sub>3</sub> H(CO) <sub>10</sub> (CNMe <sub>2</sub> )                                                      | H,C-br1dged | (268)          | 96         |    |
| •     | 2.841(6)             | Ru <sub>3</sub> H <sub>3</sub> (CMe) (CO) <sub>9</sub>                                                        | Ru-H-Ru     | (304)          | 12         |    |
|       | 2,845(1)             | Ru2 (CO) 5 (C5H4 CPh2)                                                                                        |             | (260)          | 198        |    |
|       | 2.891(1)             | Ru2 (CO) 5 (C16H16)                                                                                           |             | (257)          | 183        |    |
|       | 2.909(2)             | Ru2(S1Me <sub>3</sub> )(CO)4(C <sub>8</sub> H <sub>8</sub> S1Me <sub>3</sub> )                                |             | (298)          | 154        |    |
|       | 2.935(2)             | Ru2(CO)5[Me2S1(CH2)2(S1Me2)C6H8]                                                                              |             | (599)          | 154        |    |
|       | 2.937(1)             | Ru2(SiMe3)(CO)5(C7H6SiMe3)                                                                                    |             | (262)          | 153        |    |
|       | 2.943(1)             | [Me_35nRu(CO)4]2                                                                                              |             | (295)          | 112        |    |
| Ru-Pt | 2.707,<br>2.729(2)   | RuPt <sub>2</sub> (CO) <sub>5</sub> (PMePh <sub>2</sub> ) <sub>3</sub>                                        |             | (269)          | 278        |    |
|       |                      | •                                                                                                             |             |                |            |    |

| Refer  | 08-08 | 2.717, 2.855,<br>2.884(5)      | 083(CO)10(C2Ph2)                                  |            | (278) | 204       |
|--------|-------|--------------------------------|---------------------------------------------------|------------|-------|-----------|
| ence   |       | 2.8574(7)                      | 08 <sub>3</sub> H <sub>2</sub> (CO) <sub>11</sub> | 08-08(H)   | (270) | 68        |
| • p. 1 | ×     | 2.9097(7)                      |                                                   | 0808       |       |           |
| 132    |       | 2,9886(9)                      |                                                   | H-bridged  |       |           |
|        | 5-05  | 1.89                           | Co3(COBCL2NEt3)(CO)9                              |            | (305) | 132       |
|        | Co-P  | 2.244                          | co4 (PPh ) 2 (CO) 1 0                             |            | (306) | 193       |
| •      | Co-S  | 2.26(1)                        | Co452(CO) 10                                      |            | (307) | 67        |
|        | Co-Co | 2.467                          | Co 4H 4 (C 5H 5) 4                                |            | (279) | 173       |
|        |       | 2.47                           | Co3(COBCI2NEt3)(CO)9                              |            | (305) | 132       |
|        |       | 2.480(9)                       | Co452(CO) 10                                      | CO-bridged | (307) | 67        |
| •      |       | 2.488(12)                      | HPeCo 3(CO) 9 [P(OMe) 3]3                         |            | (267) | 155       |
|        |       | 2.519(2)                       | Co4(PPh)2(CO)10                                   | CO-bridged | (306) | 193       |
|        |       | 2.598(10)                      | Co452(CO) 10                                      |            | (307) | 67        |
|        |       | 2.697(2)                       | Co4 (PPh) 2 (C0) 10                               |            | (306) | 193       |
|        | Co-N1 | 2.418(2)                       | (C5H4Me)NtCo(C0)4(PCyPh2)                         |            | (244) | 228       |
|        |       | 2.425(2)                       | (C5H5)N1Co(C0)4[P(C6H4P)3]                        |            | (243) | 220       |
|        | Co-Pt | 2.528,<br>2.554(3)             | Co2Pt2(CO) 8(PPh3)2                               |            | (271) | 275       |
|        |       | 2.579(2)<br>2.579(2)           |                                                   | CO-bridged |       |           |
|        | Rh-C  | 2.127                          | Rh BC(CO) 1 7                                     |            | (308) | 180       |
|        | Rh-Rh | 2.680(3)                       | [Rh(CO)(C5H5)]2C4F6                               |            | (247) | 129       |
|        |       | 2.699 <del>-</del><br>2.913(3) | Rh <sub>8</sub> c(co) <sub>17</sub>               |            | (308) | 85<br>180 |
| •      |       |                                |                                                   |            |       |           |

ormeat. Los viving t

-----

| 2.81(av.) $[Rh_1, jh_3(CO)_{2,4}]^{2^-}$ (273)         1       2.307(2) $(C_{6}H_{5})_{1}\Gamma(Fh_{2})(CONe)(CORh)Mn(CO)_{3}$ (274)         1       2.336 $Nt_4(CO)_{12}^{2^-}$ $Nt_3^-phane$ (274)         2.365 $Nt_4(CO)_{12}^{2^-}$ $Nt_3^-phane$ (273)         2.365 $Nt_4(CO)_{12}^{2^-}$ $Nt_3^-hase$ (280)         2.365 $Nt_4(CO)_{12}^{2^-}$ $Nt_3^-hase$ (281)         2.458 $Nt_3(CO)_{12}^{2^-}$ $Nt_3^-hase$ (281)         2.459 $Nt_4(CO)_{12}^{2^-}$ $Nt_3^-hase$ (281)         2.459 $Nt_4(CO)_{12}^{2^-}$ $Nt_4Nt_3^-hase$ (281)         2.445 $[Nt_5(CO)_{12}^{2^-}]^{2^+}$ $Nt_4Nt_3^-hase$ (281)         2.743 $Nt_5(CO)_{12}^{2^-}$ $Nt_4Nt_3^-hase$ (281)         2.743 $[Nt_5(CO)_{12}^{2^-}]^{2^+}$ $Nt_4Nt_3^-hase$ (281)         2.743 $[Nt_5(CO)_{12}^{2^-}]^{2^+}$ $Nt_4Nt_3^-hase$ (281)         2.743 $[Nt_5(CO)_{12}^{2^-}]^{2^+}]_{2^-}$ $Nt_4Nt_3^-hase$ (281)         2.743 $[Nt_5(C_5)_{12}^{2^+}]_{2^-}]_{2^-}$ $Nt_4Nt_3^-hase$ (281)         2.557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 2.93(av.)          | 14117100116J                                                                           | occaneuron   range<br>tetrahedron ] 2.740-3.000 | (212) |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|----------------------------------------------------------------------------------------|-------------------------------------------------|-------|----|
| 2.307(2) $(c_{1}t_{1})_{1}T(Fh_{2})(CONb)(COPh)M_{0}(CO)_{3}$ (293)         1       2.336 $N_{14}(CNU_{12})^{2}$ $N_{13}-P_{1ane}$ (274)         2.36 $N_{14}(CO)_{12})^{2}$ $N_{14}-P_{13}$ (214)       (214)         2.36 $N_{14}(CO)_{12})^{2}$ $N_{14}-P_{13}$ (213)       (213)         2.365 $N_{14}(CO)_{12})^{2}$ $N_{14}-P_{13}$ (213)         2.366 $N_{14}(CO)_{12}(C_{1}F_{0})$ $N_{1-N13}$ (213)         2.458 $N_{14}(CO)_{12}/C_{1}^{2}$ $N_{1-N13}$ (213)         2.459 $N_{14}(CO)_{12}/C_{1}^{2}$ $N_{1-N13}$ (213)         2.703 $N_{14}(CO)_{12}/C_{1}^{2}$ $N_{1-N13}$ (213)         2.743- $N_{13}(CO)_{12}/2^{-1}$ $N_{1-N13}$ (213)         2.743- $N_{14}(CO)_{12}/2^{-1}$ $N_{1-N13}$ (213)         2.743- $N_{13}(CO)_{12}/2^{-1}$ $N_{1-N13}$ (210)         2.743- $N_{13}(CO)_{12}/2^{-1}$ $N_{1-N13}$ (210)         2.743- $N_{13}(CO)_{12}/2^{-1}$ $N_{1-N13}$ (210)         2.743- $N_{13}(P_{1}/P_{1}/P_{1}/P_{1}/P_{1}/P_{1}/P_{1}/P_{1}/P_{1}/P_{1}/P_{1}/P_{1}/P_{1}/P_{1}/P_{1}/P_{1}/P_{1}/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 2.81(av.)          | [Rh13H3(C0) <sub>24</sub> ] <sup>2-</sup>                                              | •                                               | (273) |    |
| H         2.338 $N_{4_{4}}(CMM_{5}^{1})^{7}$ $N_{4_{3}}(CM)_{12}^{12^{-1}}$ $N_{4_{4}}(CM)_{4}^{12^{-1}}$ $(231)^{-1}$ cloped $2.743^{-1}$ $N_{4_{3}}(CM)_{12}^{12^{-1}}$ $N_{4_{3}}(CM)_{4}^{12^{-1}}$ $(231)^{-1}$ $(231)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ $(232)^{-1}$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>G</b> . | 2.307(2)           | (c <sub>5</sub> H <sub>5</sub> ) Ir (PPh <sub>2</sub> ) (coMe) (coPh) Mn (c            | )) <sub>3</sub>                                 | (293) |    |
| 2.36 $[M_4(c0)_1c(a,F_6)_3$ $M_1$ -mine       (25)         2.369, $M_4(c0)_4(c_a,F_6)_3$ $M_1$ -Mine       (281)         2.366 $M_1(c0)_4(c_a,F_6)_3$ $M_1$ -Mine       (281)         2.458 $M_1(c0)_4(c_a,F_6)_3$ $M_1$ -Mine       (281)         2.458 $M_1(c0)_4(c_a,F_6)_3$ $M_1$ -Mine       (281)         2.459 $N_14_5(c0)_1c_3^{12}^{-1}$ $M_1$ -Mine       (281)         2.703 $M_15_0(c0)_1c_3^{12}^{-1}$ $M_1$ -Mine       (275)         2.743- $[M_15_0(c0)_1c_3^{12}^{-1}$ $M_1$ -Mine       (275)         2.865(3) $[M_15_0(c0)_1c_3^{12}^{-1}$ $N_1$ -Mine       (275)         2.865(3) $[M_15_0(c0)_1c_3^{12}^{-1}$ $N_1$ -Mine       (275)         2.5679 $[Pa_1(PPa_3)_1_2(RP_1)(C_5H_5)$ $N_1$ -Mine       (275)         2.609(1) $[Pa_1(PPa_3)_2(RP_1)(C_5H_5)$ $hr1dging Pt-Pt$ (310)         2.5670 $Pa_3(PPa_3)_2(RP_1)(C_5H_5)$ $hr1dging Pt-Pt$ (310)         2.257- $Pa_3(PPa_3)_2(RP_1)(C_5H_5)$ $hr1dging Pt-Pt$ (310)         2.200+ $Pa_3(PPa_3)_2(RP_1)_3(P_1)(P_1)_3(P_2)$ $hr1dging Pt-Pt$ (310)         2.304 $Pa$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 노          | 2,338              | N14 (CNBu <sup>E</sup> ) 7                                                             |                                                 | (274) |    |
| 2.369, Ni4,(CO)4, (C4, F_6) 3       Ni-NL3       (281)         2.385       Ni4,(CO)4, (C4, F_6) 3       Ni-NL3       (281)         2.458       Ni4,(CO)4, (C4, F_6) 3       Ni-NL3       (281)         2.459       Ni4,(CO)4, (C4, F_6) 3       Ni-NL3       (281)         2.703       Ni3,(CO)3, (C4, F_6) (C6, H_6)       (280)       (280)         2.743-       Ni3,(CO)3, (C4, F_6) (C6, H_6)       C4, F_6-bridged       (280)         2.743-       Ni3,(CO)12, 12 <sup>-1</sup> Ni-Ni, 3       (275)         2.865(3)       Ni-Ni, 3       C4, F_6-bridged       (280)         2.743-       [Ni5,(CO)12, 12 <sup>-1</sup> Ni-Ni, 3       (275)         2.609(1)       [Pd_6, (Ph_3), 12, (C-4) (C-5) (F_5))       bridging Pt-Pt       (310)         2.510(9)       [Pd_6, (Ph_3), 12, (C-4) (C-5) (F_5))       bridging Pt-Pt       (310)         2.507       Pt_3, (Ph_1), (PPh_3), 2       bridging Pt-Pt       (310)         2.237       2.237       bridging Pt-Pt       (310)         2.300       Pt_3, (Ph_1), 2, (PPh_3), 2       bridging Pt, Pt       (310)         2.304       Pt_3, (Ph_1), 2, (PPh_3), 2       bridging Pt, Pt       (310)         2.304       Pt_4, (Ph_3), 2, (PPh_3), 2       bridging Pt, Pt       (31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 2.36               | [N45(C0)12] <sup>2-</sup>                                                              | N13-plane                                       | (275) |    |
| 2.458N13(C0) 3(G,F_6) (G,H_6)(240)2.669N14 (C0) 4(G,F_6) (G,H_6)13-base(281)2.669N13(C0) 3(G,F_6) (G,H_6) $G_{4}F_{6}$ bridged(280)2.703N13(C0) 3(G,F_6) (G,H_6) $G_{4}F_{6}$ bridged(280)2.703N13(C0) 12] <sup>2-</sup> N1-N1 3(275)2.703[N4_5(C0) 12] <sup>2-</sup> N1-N1 3(275)2.703[Pd_2(GNMe)_6] <sup>2+</sup> $G_{4}F_{7}$ (237)2.679[Pd_2(FNh_3)]_2(G,H_7) (G_{5}H_5)N1-N1 3(275)2.679[Pd_{7}Fh_3)]_2(G,H_7) (G_{5}H_5)bridding Pt-Pt(310)2.576Pt_3(PPh_2)_3(Ph) (PPh_3)_2bridding Pt-Pt(310)2.576Pt_3(PPh_2)_2(PPh_3)_2bridding Pt-Pt(310)2.324Pt_3(PPh_2)_2(Ph)_3(Ph) (PPh_3)_2bridding Pt-Pt(310)2.324Pt_3(PPh_2)_3(Ph) (PPh_3)_2bridding Pt-Pt(310)2.324Pt_3(PPh_2)_2(Phh_3)_2bridding Pt-Pt(310)2.324Pt_3(PPh_2)_3(Ph) (PPh_3)_2bridding Pt-Pt(310)2.324Pt_3(PPh_2)_3(Ph) (PPh_3)_2bridding Pt-Pt(310)2.324Pt_3(PPh_2)_3(Ph) (PPh_3)_2bridding PtPt(310)2.334Pt_3(PPh_2)_3(Ph) (PPh_3)_2bridding PtPt(310)2.304Pt_3(PPh_2)_2(Phh_3)_2bridding PtPt(310)2.364Pt_2(PPh_2)_2(Phh_3)_2bridding PtPt(310)2.564Pt_2(PPh_2)_22.564Pt_2(PPh_2)_2(323)2.604Pt_2(PPh_2)_2Pt_2(PPh_2)_2(323)(275)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 2,369,<br>2.385    | N14 (CO) 4 (C4F6) 3                                                                    | N1-N13                                          | (281) |    |
| 2.669       N4, (CO), (C4, F_6) 3       N13-base       (281)         2.703       N13, (CO) 3, (C4, F_6) (C6, H_6)       C4, F_6-bridged       (280)         2.743-       [N15, (CO) 12] <sup>2-</sup> N1-N1 3       (275)         2.865(3)       [P42, (GNMe)_6] <sup>2+</sup> Ni-N1 3       (275)         2.557-       [P43, P12, (C41+) (C5, H_5))       bridging Pt-Pt       (310)         2.257-       Pt3 (PPh2) 3 (Ph) (PPh3)2       bridging Pt-Pt       (310)         2.257-       Pt3 (PPh2) 2 (Ph3)2       bridging Pt-Pt       (310)         2.304       Pt3 (Ph2) 3 (Ph3)2       bridging Pt-Pt       (310)         2.304       Pt3 (Ph3)2       bridging Pt-Pt       (310)         2.304       Pt3 (Ph3)2       bridging Pt-Pt       (309)         2.304       Pt3 (Ph3)2       bridging Pt-Pt       (310)         2.304       Pt3 (Ph3)2       bridging Pt-Pt       (310)         2.305       [Pt4 (Ph3)2)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 2.458              | N13(CO)3(C4F6)(C8H8)                                                                   |                                                 | (280) |    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 2.669              | N14 (CO)4 (C4F6) 3                                                                     | N1.3-babe                                       | (281) |    |
| 2.743- $[M_5(CO)_{12}]^2^ M_1-M_3$ (275)         2.865(3) $[Pd_2(CMe_0_6]^{2^+}]^2$ $M_1-M_3$ (237)         2.609(1) $[Pd_2(CMe_0_5]^{2^+}]_2(Br)(C_5H_5)$ $Bridging Pt-Pt$ (233)         2.609(1) $[Pd_2(CMe_0_3)]_2(G_1H_5)(C_5H_5)$ $bridging Pt-Pt$ (310)         2.679 $Pd_3(PPh_2)_3(Ph)(PPh_3)_2$ $bridging Pt-Pt$ (310)         2.577 $Pt_3(PPh_2)_3(Ph)(PPh_3)_2$ $bridging Pt-Pt$ (310)         2.2376 $Pt_3(PPh_2)_3(Ph)(PPh_3)_2$ $bridging Pt-Pt$ (310)         2.3324 $Pt_3(PPh_2)_3(Ph)(PPh_3)_2$ $bridging Pt-Pt$ (310)         2.300- $Pt_3(PPh_2)_3(Ph)(PPh_3)_2$ $bridging Pt-Pt$ (310)         2.304 $Pt_3(PPh_2)_3(Ph)(PPh_3)_2$ $bridging PtPt$ (310)         2.304 $Pt_3(PPh_2)_3(Ph)(PPh_3)_2$ $bridging PtPt$ (310)         2.304 $Pt_3(PPh_2)_3(Ph)(PPh_3)_2$ $bridging PtPt$ (310)         2.565(1) $[Pt_2(CM_2)_2(PPh_3)_2$ $2.585(10)$ $2.585(10)$ (275)         2.662 $Pt_3(CM_2 V_2)$ $Pt_3(PPh_2)_2(PPh_3)_2$ $(275)$ (275)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 2.703              | N13(CO) 3(C4F6) (C8H8)                                                                 | C4F6-bridged                                    | (280) |    |
| d 2.5310(9) $[Pd_2(GNMe)_6]^{2+}$ (237)<br>2.609(1) $[Pd_4(PPh_3)]_2(G_4U_7)(G_5H_5)$ (264)<br>2.679 $[Pd(PPh_3)]_2(G_4U_7)(G_5H_5)$ (263)<br>2.679 $Pt_3(PPh_2)_3(Ph)(PPh_3)_2$ bridging $Pt-Pt$ (310)<br>2.2276 $Pt_3(PPh_2)_3(Ph)(PPh_3)_2$ bridging $Pt-Pt$ (310)<br>2.300 $Pt_2(PPh_2)_2(PPh_3)_2$ bridging $Pt-Pt$ (310)<br>2.304 $Pt_3(Ph_2)_3(Ph)(PPh_3)_2$ bridging $Pt-Pt$ (310)<br>2.304 $Pt_3(PPh_2)_3(Ph)(2Ph_3)_2$ (309)<br>2.304 $Pt_3(PPh_2)_3(Ph)(2Ph_3)_2$ bridging $Pt-Pt$ (310)<br>2.304 $Pt_3(PPh_2)_3(Ph)(2Ph_3)_2$ (309)<br>2.304 $Pt_3(PPh_2)_3(Ph)(2Ph_3)_2$ (739)<br>2.585(1) $[Pt_2(Cd_1)_2(C(F_3)_2 P+1)_3]_2$ (239)<br>2.664 $Pt_3(CNBu^{4})_6$ (279)<br>2.664 $Pt_3(CNBu^{4})_6$ (275)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 2.743-<br>2.865(3) | [N15(C0)12] <sup>2-</sup>                                                              | e IN-IN                                         | (275) |    |
| 2.609(1) [Pd(PFr <sub>3</sub> <sup>1</sup> )] <sub>2</sub> (Br)(C <sub>5</sub> H <sub>5</sub> ) (C <sub>5</sub> H <sub>5</sub> ) (262)<br>2.679 [Pd(PPh <sub>3</sub> )] <sub>2</sub> (C <sub>5</sub> H <sub>5</sub> ) bridging Pt-Pt (310)<br>2.276 Pt <sub>3</sub> (PPh <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub> bridging Pt-Pt (310)<br>2.204 Pt <sub>2</sub> (PPh <sub>2</sub> ) <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> bridging PtPt (310)<br>2.304 Pt <sub>3</sub> (PPh <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub> (30)<br>2.304 Pt <sub>3</sub> (PPh <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub> (30)<br>2.304 Pt <sub>3</sub> (PPh <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub> (30)<br>2.304 Pt <sub>3</sub> (PPh <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub> (30)<br>2.304 Pt <sub>3</sub> (PPh <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub> (30)<br>2.304 Pt <sub>3</sub> (PPh <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub> (30)<br>2.304 Pt <sub>3</sub> (PPh <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub> (30)<br>2.304 Pt <sub>3</sub> (PPh <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub> (30)<br>2.304 Pt <sub>3</sub> (PPh <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub> (30)<br>2.304 Pt <sub>3</sub> (PPh <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub> (30)<br>2.304 Pt <sub>3</sub> (PPh <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub> (30)<br>2.304 Pt <sub>3</sub> (PPh <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub> (30)<br>2.632 Pt <sub>3</sub> (CNBu <sup>4</sup> ) <sub>6</sub> (30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pd         | 2.5310(9)          | [Pd2(CNMe)6] <sup>2+</sup>                                                             |                                                 | (237) |    |
| 2.679 [Pd(PPh <sub>3</sub> )] <sub>2</sub> (C <sub>4</sub> H <sub>7</sub> )(C <sub>5</sub> H <sub>5</sub> ) [Pd(PPh <sub>3</sub> )] <sub>2</sub> (C <sub>4</sub> H <sub>7</sub> )(C <sub>5</sub> H <sub>5</sub> ) [Pt <sub>3</sub> ] <sub>2</sub> [Pt <sub>1</sub> ] <sub>2</sub> [Pt <sub>2</sub> ] <sub>2</sub> (Ph <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub> [Pt <sub>1</sub> ] <sub>2</sub> [Pt <sub>2</sub> ] <sub>2</sub> (Ph <sub>3</sub> ] <sub>2</sub> [Pt <sub>2</sub> ] <sub>2</sub> [Pt <sub>2]</sub> [Pt <sub>2</sub> ] <sub>2</sub> [Pt <sub>2]</sub> |            | 2.609(1)           | [Pd(PFr <sub>3</sub> <sup>1</sup> )] <sub>2</sub> (Br)(C <sub>5</sub> H <sub>5</sub> ) |                                                 | (262) | -  |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 2.679              | [Pd(PPh3)]2(C4N7)(C5H5)                                                                |                                                 | (263) |    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C4         | 2.257-<br>2.276    | Pt3(PPh2)3(Ph)(PPh3)2                                                                  | bridging Pt-Pt                                  | (310) |    |
| 2.304 $Pt_3(PPh_2)_3(Ph)(PPh_3)_2$ bridging $PtPt$ (310)t2.584(2) $[Pt_2CI_4(CO)_2]^{2-}$ (238)2.585(1) $[Pt(cod)]_2OC(F_3)_2$ (239)2.604 $Pt_2(PPh_2)_2(PPh_3)_2$ (79h_3)_22.632 $Pt_3(CNBu^{t})_6$ (275)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -          | 2.300-<br>2.324    | Pt2(PPh2)2(PPh3)2                                                                      |                                                 | (309) |    |
| te 2.584(2) [Pt <sub>2</sub> Cl <sub>4</sub> (CO) <sub>2</sub> ] <sup>2-</sup> (238)<br>2.585(1) [Pt(cod)] <sub>2</sub> OC(CF <sub>3</sub> ) <sub>2</sub> (239)<br>2.604 Pt <sub>2</sub> (PPh <sub>2</sub> ) <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> (200<br>2.632 Pt <sub>3</sub> (CNBu <sup>t</sup> ) <sub>6</sub> (275)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 2.304              | Pt <sub>3</sub> (PPh <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub>  | bridging PtPt                                   | (310) | C. |
| 2.585(1) [Pt(cod)] <sub>2</sub> OC(CF <sub>3</sub> ) <sub>2</sub><br>2.604 Pt <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub><br>2.632 Pt <sub>3</sub> (CNBu <sup>t</sup> ) <sub>6</sub> (275)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ę          | 2.584(2)           | [Pt <sub>2</sub> C14 (C0) <sub>2</sub> ] <sup>2-</sup>                                 |                                                 | (238) |    |
| 2.604 Pt <sub>2</sub> (PFh <sub>2</sub> ) <sub>2</sub> (FPh <sub>3</sub> ) <sub>2</sub> (309)<br>2.632 Pt <sub>3</sub> (CNBu <sup>t</sup> ) <sub>6</sub> (275)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 2.585(1)           | [Pt(cod)]20C(CF3)2                                                                     |                                                 | (539) |    |
| 2.632 Pt <sub>3</sub> (CNBu <sup>F</sup> ) <sub>6</sub> (275)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 2.604              | Pt2(PPh2)2(PPh3)2                                                                      |                                                 | (606) |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 2.632              | Pt <sub>3</sub> (CNBu <sup>t</sup> ) <sub>6</sub>                                      |                                                 | (275) |    |

| • | 2.647(2) | RuPt <sub>2</sub> (CO) <sub>5</sub> (PMePh <sub>2</sub> ) <sub>3</sub>                                                                     | (269) |  |
|---|----------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
|   | 2.785    | Pt <sub>3</sub> (PPh <sub>2</sub> ) <sub>3</sub> (Ph)(PPh <sub>3</sub> ) <sub>2</sub>                                                      | (UTE) |  |
|   | 2.820(2) | <i>wido-</i> μ(4,8)-[(Me <sub>3</sub> P)2Pt]-8,8-(Me <sub>3</sub> P)2-8,7,10-PtC2B <sub>6</sub> H <sub>10</sub>                            | (225) |  |
|   | 2.987(4) | Co2Pt2(CO)8(PPh3)2                                                                                                                         | (271) |  |
|   | 3.051(4) | <i>clo</i> 80-2, 3-[(Et <sub>3</sub> P) <sub>2</sub> ] <sub>2</sub> -2, 3,1,6-Pt <sub>2</sub> C <sub>2</sub> B <sub>5</sub> H <sub>7</sub> | (212) |  |

.

| Complex                                                                               |             | (°)0-N-M  | M-N(Å)    | N-0(Å)               | Reference |
|---------------------------------------------------------------------------------------|-------------|-----------|-----------|----------------------|-----------|
| (a) Bent nitroeyls                                                                    |             |           |           |                      | -         |
| Fe(NO)(tpp)                                                                           | (324)       | 149.2(6)  | 1.717(7)  | 1.122(12)            | 318       |
| [0s(NO)2(0H)(PPh3)2] <sup>+</sup> (apical)                                            | (328)       | 133.6(12) | 1,86(1)   | 1.17(2)              | 116       |
| $[co(NO)(SCN)(dlars)_2]^+$                                                            | (330)       | 132.3(14) | 1.85(1)   | 1,00(1)              | 312       |
| Rh(NO)C12(PPh3)2                                                                      | (166)       | 124.8(16) | 1.912(10) | 1.15                 | 313       |
| [Rh(NO)2(PPh3)2] <sup>+</sup>                                                         | (332)       | 158.9(4)  | 1,818(4)  | 1,158(6)             | 315       |
| (b) Linear nitrogyla                                                                  | •<br>•<br>• |           |           |                      |           |
| [140 (140) I (141 <sub>2</sub> 144Ph) (C <sub>5</sub> H <sub>5</sub> ) ] <sup>+</sup> | (170)       | 170.6(3)  | 1.780(4)  | 1,188(5)             | 76        |
| [Re (NO)Br4 (MeCN) ]                                                                  | (321)       | 178(6)    | 1.771(11) | 0.99(2) <sup>a</sup> | 310       |
| [Re (NO)Br <sub>4</sub> (EtOH) ] <sup>-</sup>                                         | (322)       | 169(3)    | 1.723(15) | 1.19(2)              | 310       |
| Fe (NO) 2C1 (FPh 3)                                                                   | (323)       | 166.4(5)  | 1.679(5)  | 1.136(7)             | 311       |
|                                                                                       |             | 165.5(5)  | 1.681(5)  | 1,163(7)             |           |
| Ru(NO)Cl <sub>3</sub> (PPh <sub>3</sub> ) <sub>2</sub>                                | (325)       | 180       | 1.737(7)  | 1.142(8)             | 17        |
| Ru (NO) 2 (PPh <sub>3</sub> ) 2                                                       | (326)       | 168.0(15) | 1.748(20) | 1.215(18)            | 316       |

1.229(18)

1,688(20)

174.7(16)

| Refer    | [08(NO) (CO)2(PPh3)2] <sup>+</sup>                     | (15)                   | 178.3(10)        | 1.84(1) <sup>b</sup> | $1.16(1)^{b}$ | 257  |   |
|----------|--------------------------------------------------------|------------------------|------------------|----------------------|---------------|------|---|
| ences    | 0s(NO)2(PPh3)2                                         | (327)                  | 178.7(7)         | 1.776(7)             | 1.195(8)      | 14   |   |
| p. 132   |                                                        |                        | 174.1(6)         | 1.771(6)             | 1.211(7)      |      |   |
| <b>1</b> | [0s(NO)2(OH)(PPh3)2] <sup>+</sup> (basal)              | (328)                  | 177.6(12)        | 1.63(1)              | 1.24(2)       | 317  |   |
|          | [Co(NO)(diars)2] <sup>2+</sup>                         | (329)                  | 178(2)           | 1.68(3)              | 1.16(2)       | 312  |   |
|          | [Ir(NO)Br <sub>5</sub> ] <sup>7</sup>                  | (333)                  | 170.3(26)        | 1.710(25)            | 1.166(42)     | 319  |   |
|          | [Ir(NO)C15]                                            | (334)                  | 174.3(11)        | 1.760(11)            | 1.124(17)     | 319  |   |
|          | [Ir(NO)C1(PPh3)]20                                     | (335)                  | 177.2(10)        | 1.70(1)              | 1.18(2)       | 314  |   |
|          |                                                        |                        | 174.2(10)        | 1.73(1)              | 1.14(2)       |      |   |
|          | {N1 (N0) [P (OCH <sub>2</sub> ) $_{3}$ CHe] $_{3}^{+}$ | (336)                  | 176.8(18)        | 1.581(12)            | 1.122(15)     | 319a |   |
|          | <sup>d</sup> Probably disordered, not reac             | lved. <sup>b</sup> NO. | CO disordered.   |                      |               |      | 1 |
|          | •                                                      |                        | ·<br>·<br>·<br>· |                      |               |      |   |
|          |                                                        |                        |                  |                      | · · · ·       |      |   |
|          |                                                        |                        |                  |                      |               |      |   |

89

-

46

221

| No.              | FORMULA                                                                         | STRUCTURE                                                                              | CRYSTAL<br>CLASS | SPAC<br>GROU |
|------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------|--------------|
|                  | C <sub>2</sub>                                                                  |                                                                                        |                  |              |
| 94               | C244C13PtK <sup>+</sup> .H20                                                    | K[PtCl <sub>1</sub> (C <sub>2</sub> H <sub>4</sub> )].H <sub>2</sub> O                 | м                | P2/c         |
| 238              | C2C1402Pt2 <sup>2-</sup> .2C12H28N <sup>+</sup>                                 | (SPr4)2{Pt2C14(C0)2}                                                                   | н                | P21/a        |
| 2                | C2I.O2RhC12HZEN*                                                                | NPr: [RhI4 (CO) 2]                                                                     | м                | P21          |
|                  |                                                                                 |                                                                                        | M                | PZ:/c        |
| <sup>;</sup> Cry | stal data from ref. 25a. <sup>5</sup> Need                                      | les. Octahedra.                                                                        |                  |              |
|                  | C <sub>5</sub>                                                                  |                                                                                        |                  |              |
| 39               | C+Cl کی Sn                                                                      | Mn (SnC1 3) (CO) 5                                                                     | н                | ₩2:/c        |
|                  | ۵ <sub>۶</sub>                                                                  |                                                                                        |                  |              |
| 85               | C <sub>6</sub> H <sub>9</sub> F.2t                                              | ₽t (C2H,)2(C2F,)                                                                       | м                | A2/a·        |
| 47               | C <sub>6</sub> H <sub>1+</sub> Cl <sub>2</sub> N <sub>2</sub> O <sub>2</sub> Pd | cis-PdCl2[C(OMe)(NHMe)]2                                                               | Tri              | ₽Ī           |
| 1                | C <sub>5</sub> Cr0 <sub>5</sub>                                                 | Cr (CO) <sub>5</sub>                                                                   | 0                | Pnma         |
|                  | C <sub>7</sub>                                                                  |                                                                                        |                  |              |
| 96               | С <sub>7</sub> Н <sub>5</sub> С1 <sub>5</sub> Ge <sub>2</sub> ОRu               | Ru(GeCl <sub>3</sub> ) <sub>2</sub> (CO)(C <sub>6</sub> H <sub>6</sub> )               | o                | Poma         |
| 52               | C7H7Fe0, C36H33NP2+                                                             | [::(PPh3)2][Fe(C3H7)(CO).]                                                             | H                | C2/c         |
| 35               | C7H704 Rh                                                                       | Rh(CO) <sub>2</sub> (acac)                                                             | Tri              | PĪ           |
| 14               | C <sub>7</sub> H <sub>26</sub> B <sub>5</sub> Br <sub>2</sub> IrOP <sub>2</sub> | Ir(B <sub>5</sub> H <sub>8</sub> )Br <sub>2</sub> (CO)(PHe <sub>3</sub> ) <sub>2</sub> | H                | P21/c        |
|                  | ¢8                                                                              |                                                                                        |                  |              |
| 91               | Call 12CrF9P3                                                                   | CrH(C6H11) (PF3)3                                                                      |                  |              |

۲-2018-[RuCl2(C6H9N,02)(NH3)3]CL.H20

221 Ugazoogrzru

nido-8,8-(He3P)2-7,8,10-CPtCB8H10 Tri

o

Pbca

PĪ 2

z

4

4

2

4

័ទ

4

z

4

4

8 z

4

8

| TABLE | 3. | ORGANOMETALLICS |
|-------|----|-----------------|

C8H18C12N702B1+.C1-.H2O

C<sub>8</sub>H<sub>28</sub>B<sub>8</sub>P<sub>2</sub>Pt

| a            | ъ.                         | c                    | а.        | B                | ¥,        | DATA   | R    | R'   | NOTES                  | REFERENCE                           |
|--------------|----------------------------|----------------------|-----------|------------------|-----------|--------|------|------|------------------------|-------------------------------------|
|              | 94                         | -                    |           |                  |           |        |      | -    | Painter, 23 ann a 1988 | ayaa ya afada da a walada wa dan ya |
|              |                            | · .                  |           |                  | · .       |        |      |      |                        |                                     |
| 11.212(3)    | 8.424(6)                   | 9.696(6)             |           | 107.52(4)        |           | 1210   | 7.0  | 7.6  | ND.2                   | 25                                  |
| 19.727(6)    | 9.176(3)                   | 21.481(10)           |           | 113.72(3)        |           | 4448   | 10.9 |      |                        | 27                                  |
| 12.764(8)    | 12.695(8)                  | 7.737(5)             |           | 90.0(2)          |           | 2051   | 5.4  | 2    | ь                      | 28                                  |
| 9.537(6)     | 15.551(9)                  | 18.218(11)           |           | 108.4(2)         |           |        |      |      | e                      | 28                                  |
|              |                            |                      |           |                  |           |        |      | ,    |                        |                                     |
|              |                            | ж.<br>-              |           |                  |           |        |      |      |                        | :                                   |
|              |                            |                      |           | *                | ×         |        |      |      |                        |                                     |
| 4.10(1)      | 13.38(5)                   | 13.27(2)             |           | 97.39(21)        |           | 2581   | 9.98 |      |                        | 29                                  |
|              |                            |                      |           |                  |           |        |      |      |                        |                                     |
|              |                            |                      |           |                  |           |        |      |      |                        | ,                                   |
| 8.884(4)     | 7.552(2)                   | 12.934(6)            |           | 109,51(3)        |           | 765    | 8.5  |      |                        | 30                                  |
| 9 1 5 / 1 1  | 9.96.23                    |                      |           |                  | -         |        |      |      |                        |                                     |
| 8.43(1)      | 8.26(1)                    | A*14(1)              | 84.8(1)   | 105.2(1)         | 106.7(1)  | 1947   | 4.7  |      |                        | 31                                  |
| 1.505(4)     | 10.916(3)                  | <del>6</del> .203(2) |           | -                |           | 477    | 2.9  | 4.9  | ND, 78                 | 26                                  |
|              |                            |                      | •         |                  | 2         |        |      |      |                        |                                     |
|              |                            |                      |           |                  | х.        |        |      |      |                        |                                     |
| 4.3071(6)    | 13.2024(6)                 | 8.3497(5)            |           |                  |           | 720    | 3.8  | 3.9  |                        | 32                                  |
| 4.20(2)      | 9.38(1)                    | 24.21(2)             | 2<br>     | 97.22(8)         |           | 1597   | 7    |      |                        | 33                                  |
| 6.5189(5)    | 7.7614(8)                  | 9.2049(12)           | 106.04(1) | 91.15(1)         | 100.21(1) | 1456   | 3.8  |      |                        | 34                                  |
| 3.8237(36)   | 10.6606(28)                | 13.6112(34)          | -         | 104.90(2)        | i.<br>K   | 2558   | 4.84 | 4.88 | *                      | 35                                  |
|              |                            |                      |           |                  |           |        |      |      |                        |                                     |
|              |                            |                      |           |                  |           |        | ``   |      |                        |                                     |
|              |                            |                      |           |                  |           |        |      |      | SD ·                   | 332                                 |
| 1.341(3)     | 11.606(5)                  | 26.673(7)            |           | •                | •         | 1314   | s.9  |      |                        | 37                                  |
| 9.551(3)     | 12.321(4)                  | 10.156(2)            | 107.37(2) | 123.29(2)        | 91.87(2)  | 3428   | 8    |      |                        | 38                                  |
|              | анан сайта.<br>Калан сайта |                      |           |                  |           |        |      |      | · .                    |                                     |
| eferences p. | 132                        | a gari               |           | . <sup>-</sup> · |           | ,<br>, | `    |      |                        |                                     |

| 36  |                                                        |                                                      |     |    |  |
|-----|--------------------------------------------------------|------------------------------------------------------|-----|----|--|
| 228 | CaH32B20T1 <sup>2-</sup> -2C4H12N <sup>+</sup> -2C3H60 | $(N_{e_4})_2[Ti(1,6-C_{2B_10}H_{10}He_2)_2]_2He_2CO$ | Tri | PĨ |  |
| 231 | C <sub>8</sub> I2 <sup>Mo2O8</sup>                     | [Ho1(C0),] <sub>2</sub>                              |     |    |  |

 $a_{C_8H_9N_02} = caffeine.$ 

02

| a Call | 9N.O2 = caffeine.                 |                                                                                          |        |         |   |
|--------|-----------------------------------|------------------------------------------------------------------------------------------|--------|---------|---|
|        | Cg                                |                                                                                          | -<br>- |         |   |
| 162    | CgH5F6FeO2P                       | Fe(CO) <sub>2</sub> [P(CF <sub>3</sub> ) <sub>2</sub> ](C <sub>5</sub> H <sub>5</sub> )  | н      | P21/c   | 4 |
| 163    | C9H5F6Fe03P                       | $Fe(CO)_{2}[P(O)(CF_{3})_{2}](C_{5}H_{5})$                                               | м      | P21/c   | 4 |
| 206    | C9H7BrHoO2                        | MoBr(CO) <sub>2</sub> (C <sub>7</sub> H <sub>7</sub> )                                   | 0      | P212121 | 4 |
| 205    | CgH7C1M002                        | MoC1 (CO) 2 (C7H7)                                                                       | 0      | P212121 | 4 |
| 284    | CgH7Cl 35002Sn                    | $Mo(SnCl_3)(CO)_2(C_7H_7)$                                                               | 0      |         | 4 |
| 31     | C9H7NO5S2W                        | ¥(CO) 5(C, H7852) <sup>a</sup>                                                           | M      | P21/m   | 4 |
| 49     | C9H10BrCrN0.                      | trans-CrBr(CO); (CNEt <sub>2</sub> )                                                     |        |         |   |
| 133    | C <sub>9</sub> H <sub>12</sub> m0 | ₩n(CO)(C4H6)2                                                                            | Tet    | P421m   | 2 |
| 222    | CgH18BgCoO                        | Co(C <sub>5</sub> H <sub>5</sub> )[B <sub>9</sub> C <sub>2</sub> H <sub>10</sub> (COMe)] | M      | Pc      | 4 |
| 223    | C9H18B9CoO2                       | Co(C5H5)[B9C2H10(OCOMe)]                                                                 | . M    | P21/c   | 4 |
| 54     | C9H19CoN4O5                       | CoMe (OH2) (dmg)2                                                                        | 0      | Pona    | 4 |
|        |                                   |                                                                                          |        |         |   |

 $^{\circ}$  C<sub>4</sub>H<sub>7</sub>NS<sub>2</sub> = thiomorpholin-3-thione

c<sub>10</sub>

| 229 | C10HO10W2 .C8H20N                                                | NEr, [W2H(CO)10]                              | Tri | PĪ    | 1 |
|-----|------------------------------------------------------------------|-----------------------------------------------|-----|-------|---|
| 230 | C10HD10W2.C36H30NP2+                                             | [N(PPb3)2][W2H(CO)10]                         | Tri | PĪ    | 2 |
| 4   | CI0H2Cr2H2O10.2C4H80                                             | [Cr(C0)5]2 <sup>N</sup> 2 <sup>H</sup> 2-2thf | Tri | PĪ    | Z |
| 161 | C <sub>10</sub> H <sub>6</sub> F <sub>6</sub> FeN <sub>2</sub> O | Fe[HI:C(CF3)N:C(CF3)](CO)(C5H5)               | н   | PZ1/a | 4 |
| 155 | CloH7MnO4                                                        | Mn (CO) 3 (C5H4 CONe)                         | M   | P21/c | 4 |
| 156 | C10H70%Be                                                        | Re (CO) 3 (C5H4 COMe)                         | н   | P21/# | 4 |
| 123 | C <sub>10</sub> H <sub>e</sub> FeO <sub>5</sub>                  | Fe(CD) 3(C7H8O2) <sup>G</sup>                 | Tri | PĪ    | 2 |
|     | 이 이 가 가 가 가 봐야 봐요. 같아?                                           |                                               |     |       |   |

| 6.891(2)                                   | 10.196(5)  | 8.950(5)  | 102.25(3) | 101.85(3) | 86.27(3) | 1411 6.0     | 49 |
|--------------------------------------------|------------|-----------|-----------|-----------|----------|--------------|----|
| 11.433(3)                                  | 14.244(3)  | 16.791(3) | 58.20(1)  | 96.55(1)  | 99.84(1) | 3282 5.0     | 49 |
| 19.03(2)                                   | 10.27(1)   | 6.37(1)   | 97.3(1)   | 97.9(1)   | 95.9(1)  | 1310 6.8     | 50 |
| 8.975(7)                                   | 14.696(13) | 9.785(4)  |           | 104.84(5) |          | 1267 4.9 4.8 | 51 |
| 13.19                                      | 12.39      | 6.26      |           | 95        |          | 627 12       | 52 |
| 14.22                                      | 11.71      | 6.59      |           | 110       |          | 1480 8.9     | 52 |
| 7.745(5)                                   | 6.787(3)   | 9.873(4)  | 96.46(3)  | 86.79(4)  | 94.05(4) | 1435 2.9     | 53 |
| 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19 |            |           |           |           |          |              |    |

.

| 11.938(8)   | 7.603(6)    | 13.818(9)   | 100.97(8) | 1777 | 4.5  |      |    | 41 |
|-------------|-------------|-------------|-----------|------|------|------|----|----|
| 6.4459(21)  | 11.8378(20) | 13.2183(21) |           | 1037 | 7.4  |      |    | 42 |
| 6.4276(20)  | 11.8527(19) | 13.1114(18) |           | 1179 | 12.5 |      |    | 42 |
| 11.8150(65) | 9.4368(8)   | 11.8150(14) |           | 1540 | 5.9  |      |    | 43 |
| 5.64(1)     | 23.17(3)    | 10-25(2)    | 91.7(3)   | 1919 | 5.3  |      |    | 44 |
|             |             |             |           | 1609 | 4.7  |      | SD | 45 |
| 7.80(1)     | 7.80(1)     | 7.21(1)     |           | 425  | 7.7  |      |    | 46 |
| 12.030(1)   | 8.297(1)    | 15.509(1)   | 112.19(1) | 2981 | 4.7  | 1.14 |    | 47 |
| 7.895(1)    | 12.592(1)   | 14.950(2)   | 99-30(1)  | 3107 | 4.8  | 1.28 |    | 47 |
| 13.136(5)   | 9.112(3)    | 12.114(4)   |           | 946  | 10   | 13   |    | 48 |

8.602(7) 11.924(9)

References p. 132

12.859(9)

| 13.412(3) | 9.325(2) | 16.781(5) | 95.21(2) | 106.15(2) | 81.55(2) | 3214 5.6 | 5.9 | 113 | 39 |
|-----------|----------|-----------|----------|-----------|----------|----------|-----|-----|----|
|           |          |           |          |           |          |          |     |     |    |

112.75(9)

93

SD

1882 4.8

333

| 188         | C10HgFeNO2S                                                        | Fe(C5H,SO2NHC5H,)                                                                   | м     | P21/c              | .4  |
|-------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------|--------------------|-----|
| 18          | C10H10BCu%0                                                        | Cu(CO)[HB(pz)]                                                                      | Rhomb | R3c                | 8   |
| 140         | CltHlCo                                                            | ርo(CsH5)2                                                                           | м     | ₽21/c              | 2   |
| 120         | C <sub>10</sub> H <sub>10</sub> FeO <sub>5</sub>                   | Fe(CO) <sub>3</sub> {C(O)OCHMeCHCHCHMe}                                             | 0     | Pbca               | 8   |
| 148         | C10H10HoS                                                          | Mo(S <sub>4</sub> )(C <sub>5</sub> H <sub>5</sub> ) <sub>2</sub>                    | M     | P21/n              | 4   |
| 15 <u>1</u> | C10H11H0NO3                                                        | Mo (COCH2CH2NH2) (CO)2(C5H5)                                                        | 0     | Pna21              | 4   |
| 128         | C10H12B2F2NIO2                                                     | N1(CO)2(C,He,B2F2)                                                                  | м     | A2/m               | 4   |
| 147         | C10H1-BND                                                          | Nb(BH4) (C5H5)2                                                                     | o     | Fom2               | 4   |
| 201         | C <sub>IG</sub> H <sub>16</sub> CI <sub>2</sub> F <sub>3</sub> PRu | RuCl <sub>2</sub> (PF <sub>3</sub> )(C <sub>13</sub> H <sub>16</sub> ) <sup>C</sup> | м     | C2/c               |     |
| 288         | C10H18As2Cl3Gem03                                                  | M(GeCl 3) (CO) 3 [Me2As (CH2) 3AsMe2 ]                                              | м     | PZ <sub>I</sub> /n | 4   |
| 7           | C10H18As2HoO4P2                                                    | Ho (CO) 4 [He2P(AsHe) 2PHe2]                                                        | 0     | Pbcn               | . 4 |
| 6           | CloHieMoOLPL                                                       | ٢٥ (CO) <sub>4</sub> (P4 426)                                                       | 0     | Pbcn               | 4   |
| 109         | C10E162N102                                                        | $Ni(O_2)(CNBu^{c})_2$                                                               | 0     | Caca               | 4   |
| 307         | ClCCoLO12S2                                                        | Co <sub>4</sub> S <sub>2</sub> (CO) <sub>10</sub>                                   | м     | P2 <sub>1</sub> /n | 2   |
|             |                                                                    |                                                                                     |       |                    |     |

<sup>2</sup> C7HaO2 = n<sup>4</sup>-3-methylene-4-vinyldihydrofuran-2(3H)-one. <sup>5</sup> b not reported.

C10H16 = 2,7-Me2-2,6-octadien-1,8-diyl.

 $c_{11}$ 

| 270 | C <sub>11</sub> H <sub>2</sub> O <sub>11</sub> Os                 | Os 3H2 (CO) 11                                                                                  | н   | P21/n   | 4 |
|-----|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----|---------|---|
| 241 | CliH5CoFeO6                                                       | (C5H5)FeCo(CO)6                                                                                 | м   | P21/m   | 2 |
| 291 | C <sub>11</sub> H <sub>6</sub> GeHn <sub>2</sub> O <sub>9</sub>   | Ж2 (Сене) (СО)9                                                                                 | м   | C2/c    | 8 |
| 304 | C11H6O9Bu                                                         | RujHj(Che) (CO)9                                                                                | 0   | Puna    | 4 |
| 195 | C <sup>II</sup> H <sup>9</sup> CLO <sup>2</sup> 2                 | Cr(CO) <sub>2</sub> (CS)(PhCO <sub>2</sub> He)                                                  | Tri | PĪ      | 2 |
| 121 | C <sub>11</sub> B <sub>8</sub> F <sub>6</sub> FeO <sub>3</sub>    | Fe(CO) <sub>3</sub> [CF(CF <sub>3</sub> )CF <sub>2</sub> CH <sub>2</sub> CHCMeCH <sub>2</sub> ] | 0   | P212121 | 4 |
| 210 | C <sub>11</sub> H <sub>10</sub> B <sub>2</sub> Fe0 <sub>3</sub> S | Fe(CO) 3 [C684 (BHe) 25] <sup>C</sup>                                                           | Tri | PĨ      | 2 |
| 158 | C11H11MnO3                                                        | $M_1(CO)_2(CH_2:CHCOMe)(C_5H_5)$                                                                | 0   | P212121 | 4 |
|     |                                                                   |                                                                                                 |     |         |   |

. 94

| 10.566(7)   | 11.802(7) | 7.671(6)    | 93.35(5)   | 978  | 5.1  | 5.0      | 54 |
|-------------|-----------|-------------|------------|------|------|----------|----|
| 13.8616(21) |           |             | 91.37(1)   | 1726 | 2.85 | 3.20     | 55 |
| 5.926(4)    | 7.732(6)  | 10.618(8)   | 121.38(11) | 765  | 7.6  |          | 56 |
| 12.0732(16) | Ъ         | 12.2010(15) |            | 2377 | 3.21 | 3.06     | 57 |
| 11.298(8)   | 12.166(9) | 8.804(6)    | 92.73(3)   | 1600 | 5.8  |          | 58 |
| 18.932(35)  | 8.734(12) | 6.472(18)   |            | 799  | 7.9  |          | 59 |
| 11.904(7)   | 15.505(8) | 12.584(4)   | 110.07(4)  | 950  | 6.9  | 6.7      | 60 |
| 13.562(5)   | 9.327(5)  | 7.923(5)    |            | 239  | 12.8 |          | 61 |
| 12.575(10)  | 9.591(7)  | 12.051(9)   | 106.70(6)  | 1112 | 3.9  |          | 62 |
| 8.215(3)    | 14.279(7) | 16_787(8)   | 90.46(1)   | 2133 | 8.3  |          | 63 |
| 8.138(1)    | 15.775(3) | 14.701(3)   |            | 541  | 9.0  | 10.0     | 64 |
| 8.045(3)    | 15.766(4) | 14.471(3)   |            | 560  | 6.6  | 5.1      | 65 |
| 11.53(1)    | 16.55(2)  | 7-05(5)     |            | 469  | 9.7  | 12-3 248 | 66 |
| 10.06(2)    | 6.81(1)   | 12.45(2)    | 97.25(33)  | 440  | 9.2  | 7.2      | 67 |

| 8.0744(16)    | 14.7265(29) | 14.7770(28) |          | 101.36(1) |           | 2259        | 3.68 | 3.52 | 68 |
|---------------|-------------|-------------|----------|-----------|-----------|-------------|------|------|----|
| 7.008(9)      | 10.941(17)  | 8.605(16)   |          | 104.7(1)  |           | 1240        | 5.5  |      | 69 |
| 8.742(2)      | 14.215(4)   | 27.221(7)   |          | 95.05(2)  | •         | 2371        | 6.2  | 5.1  | 70 |
| 17.54(3)      | 14.55(2)    | 6.766(10)   |          |           |           | 1018        | 4.7  |      | 71 |
| 7.108(3)      | 10.340(4)   | 8.523(3)    | 89.75(6) | 95.89(4)  | 105.50(4) | 1963        | 3.0  | 3.8  | 72 |
| 23.020        | 8.497       | 6.546       |          |           |           | 1245        | 3.6  |      | 73 |
| 9.221(3)      | 9.322(2)    | 9.529(2)    | 69.66(2) | 72.08(2)  | 60.71(3)  | <b>2848</b> | 2.62 | 3.64 | 74 |
| 7.718(2)      | 10.402(5)   | 13.723(4)   |          |           |           | 794         | 4.0  | 3.3  | 75 |
|               |             |             |          |           |           |             |      |      |    |
| References p. | 132         | •           |          |           |           | 5           |      |      |    |
|               |             |             |          |           | •         |             | •    |      |    |

265 Fe 3H(COMe) (CO) 10 C12H4Fe3011 м PZ<sub>1</sub>/c 4 Fe(CO), [COCHe:C(C\_He)CO] 76 C12H5FeO6 м P2t/c 4 240 C12H6HnO10Re (Ctie (Othe) و (Ctie (Othe) Tri 2 Ma [C6H.C(0)Me](C0). 70 C12H7MD5 м CZ/c 8 266 C12H8Fe3O9S Fe3H(CO)g(SPr<sup>1</sup>) м ₽21/c 4 182 C12H10F2Fe0  $Fe(COCF_2C_5H_5)(C_5H_5)$ м Ce 4 149 C12H1002TI T1(CO)2(C5H5)2 0 4 Poma Rh(C7H10)(hfac) 202 C12H11F6O2Bh C2221 0 ۵ 32 C12H12M22N20654 [Mn(CO) 3 [ -SC(SHe) NHe ] ]2 ж P21/n 4 143 C12H1+C12T1 TIC12(C5H, Me)2 o Pnea 4 144 C12H14C12V VCl<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>He)<sub>2</sub> м C2/c 4 178 C12H15Ta Ta(CH2)Me(C5H5)2 н P2<sub>1</sub>/c 4 209 C12H16C120Zr ZrCl<sub>2</sub>(thf)(CaHe) 0 Caca 8 218 C12H18B6Fe2 1,6-(C5H5)2-1,5,7,3-Fe2C2B6H8 М PZ1/n 4 39 C12H18FeN62+.2C14Fe-[Fe(CNHe)<sub>6</sub>](FeCl<sub>4</sub>)<sub>2</sub> P21/c м 2 132 CizHieHo Mo(Ci, H6) 3 P63/m z Hex 9 C12H18B204SW W(CO),[S(KBu<sup>t</sup>)<sub>2</sub>] м P21/n 4 237 C12H18H6Pd22+.2F6P-.C3H60 [Pd2(CN9e)6](PF6)2.He2CO РĨ 2 Tri 275 C12N150122-2C36H30NP2+ [N(PPh3)2]2[N15(CO)12] АĨ Tri 2 -C12012083 0=3(CO)12 P21/n 4 <sup>a</sup> C<sub>7</sub>H<sub>10</sub> = (±)-ZZ-1,2,3-n<sup>3</sup>-5,6,7-n<sup>3</sup>-heptadienediyl. <sup>b</sup> Diamagnetic isomer.

 $C_{12}$ 

<sup>a</sup>  $C_6H_4(BMe)_2S = n^5$ -benzothizdiborolane. <sup>b</sup>  $C_{10H_{14}N_{9}} = a$  macrocyclic bis-a-diimine ligand.

 170
 C<sub>11</sub>H<sub>13</sub>I<sub>20</sub>S<sub>3</sub>O<sup>+</sup>.BF<sub>4</sub><sup>-</sup>
 [MoI(NO)(SH<sub>2</sub>NHPb)(C<sub>5</sub>H<sub>5</sub>)]BF<sub>4</sub>
 Tri PI

 55
 C<sub>11</sub>H<sub>23</sub>CoN<sub>10</sub>
 CoMe(NH<sub>2</sub>NHPb)(C<sub>10</sub>H<sub>14</sub>N<sub>8</sub>)<sup>5</sup>

2

| 10.737(5) | 10.818(5) | 7.451(2) | 85.014(4) | 110.272(13) | 100.581(6) | 3100 | 2.9 |
|-----------|-----------|----------|-----------|-------------|------------|------|-----|
|           |           |          |           |             |            |      |     |

SD 77

76

| 8.0817(6) | 14.7683(11) | 14-5773(11) | ۰.        | 100.56(1) |          |      |      |      | CD . | 68 |
|-----------|-------------|-------------|-----------|-----------|----------|------|------|------|------|----|
| 13.309(7) | 23.804(14)  | 12.577(7)   | 91.73(5)  | 95-30(4)  | 77_63(4) | 3482 | 7.5  | 9.7  |      | 94 |
| 12.281(2) | 12.544(3)   | 10.388(2)   | 111.03(1) | 111.12(1) | 75.95(1) | 3249 | 4.5  | 5.7  |      | 93 |
| 10.374(1) | 11.385(1)   | 14.546(1)   |           | 97.7      | •        | 1615 | 6.7  |      |      | 92 |
| 7.208(11) |             | 11.829(24)  |           |           |          |      |      |      |      | 91 |
| 8.97(1)   | 8.83(1)     | 18.54(2)    | · .       | 97.83(17) |          | 1474 | 5.5  |      |      | 90 |
| 8.999(7)  | 12.860(10)  | 11.989(4)   |           | 92.00(5)  |          | 1640 | 3.6  | 3.8  | 113  | 89 |
| 12.328(2) | 11.973(2)   | 17.581(3)   |           |           | · .      | 1364 | 2.5  | 3.4  |      | 88 |
| 6_544(4)  | 11.685(2)   | 15.339(11)  |           | 117.13(5) |          | 1279 | 2.6  | 3.2  |      | 87 |
| 13.614(2) | 6.720(1)    | 13.763(2)   |           | 105.99(1) |          | 590  | 4.1  | 4.8  |      | 8  |
| 11.928(5) | 15.147(6)   | 6.848(4)    |           |           |          | 724  | 4.6  | 6.2  |      | 8  |
| 9.872(4)  | 13.784(3)   | 15.006(8)   |           | 98.20(4)  |          | 2525 | 5.6  |      |      | 86 |
| 8.599(1)  | 14.684(3)   | 11.264(2)   |           |           |          | 521  | 6.9  |      |      | 85 |
| 7.837(9)  | 11.475(8)   | 12.232(8)   |           |           |          | 648  | 8.6  |      |      | 84 |
| 12.204(3) | 8.386(4)    | 11.262(2)   |           | 120.11(2) |          |      | 6.0  |      |      | 83 |
| 9.59(1)   | 9.88(1)     | 19.59(2)    |           | 96.11(7)  |          | 1227 | 5.5  | 5.9  |      | 82 |
| 25.940(7) | 5.993(1)    | 17.117(4)   |           | 115.63(2) |          | 1921 | 3.1  | 3.7  |      | 81 |
| 8.999(5)  | 13.093(2)   | 8.202(2)    | 111.24(2) | 112.22(3) | 84.41(3) | 1932 | z.47 | 3.10 |      | 80 |
| 6.848(2)  | 32.396(8)   | 7.361(2)    |           | 128.91(2) |          | 989  | 4.2  |      |      | 79 |
| 7.680(2)  | 16.363(3)   | 13.936(2)   |           | 103.55(2) |          | 1440 | 6.1  | 8.5  |      | 78 |

References p. 132

| 183    | C13H6CaF1202P                                      | Co(C5H5) [ (C4F6) 2PO(0H) ]                                                      | 0          | P212121      | 4  |
|--------|----------------------------------------------------|----------------------------------------------------------------------------------|------------|--------------|----|
| 268    | С <sub>13</sub> н <sub>7</sub> %0 <sub>10</sub> Ru | Ru <sub>3</sub> H(CO) <sub>10</sub> (C:%Me <sub>2</sub> )                        | я          | ₽21/n        | 8  |
| 185    | C13H12C15Rb                                        | Rh(cod)(C5Cl5)                                                                   | 0          | Pona         | 4  |
| 194    | C13H1*CrO5                                         | Cr(C0) 3[C6H* (CHOH#e)2-c]                                                       | Tri        |              |    |
| 216    | C <sub>13</sub> H <sub>17</sub> B <sub>3</sub> Co  | [Co(C3H3)]2C2B3H4He <sup>b</sup>                                                 | o          | Pnam         | 4  |
| 125    | C13H1302BP                                         | Rh(acac)(cod)                                                                    | м          | Cc           | 4  |
| 81     | C13H1902Rh                                         | $Rh(acac)(C_{4}H_{6})_{2}^{\circ}$                                               | м          | 221/n        | 4  |
| 234    | C13F12H12N207                                      | Mn2(CO)7[N:C(CF3)2]2                                                             | M          | P21/c        | 4  |
| a Pseu | idoasymmetric, m.p. 144°.                          | <sup>5</sup> 2-He-1,7-[Co(C5H5)]2-2,4-C2B3H4. <sup>C</sup> C4H6 - 7 <sup>2</sup> | -methylene | cyclopropane | •- |

с<sub>14</sub>

| 280 | C14H8F6N1303                                    | $Nt_3(CO)_3[C_2(CF_3)_2](C_{H_2})$                                                                | M   | P21/n | 4 |
|-----|-------------------------------------------------|---------------------------------------------------------------------------------------------------|-----|-------|---|
| 243 | C1.HaFe207                                      | Fe2(CO)6(C8H90) <sup>3</sup>                                                                      | Tri | РĪ    |   |
| 261 | Сլьн <sub>а</sub> т <sub>г</sub> о <sub>б</sub> | ₩n2(CO)6(C8H8)                                                                                    | . 0 | Pbca  | 8 |
| 250 | C16H10Fe207                                     | Fe <sub>2</sub> (CO) <sub>6</sub> (C <sub>8</sub> H <sub>10</sub> O) <sup>5</sup>                 | Tri | рī    | 2 |
| 232 | С14Н10Н0204                                     | [%0(CO)2(C2H2)]2                                                                                  | 0   | Pbcm  | 4 |
| 211 | CiuHiuAg <sup>+</sup> .Clou                     | [Ph(CH <sub>2</sub> ) <sub>2</sub> Ph]AgClO <sub>4</sub> <sup>C</sup>                             | 0   | Pbnm  | 4 |
| 193 | C14H14Cr <sup>+</sup> .C12H4N4 <sup>-</sup>     | [Cr(PhMe)2](teng)                                                                                 | н   | P21/0 | 4 |
| 200 | C14H16M003                                      | Mo(CO)3(C7H7Bu <sup>C</sup> )                                                                     | Tri | PĨ    | 2 |
| 164 | C1, H17FeO2 BF.                                 | {Fe(CO)2(C3He,)(C5H5)]8F4                                                                         | M   | PZ1/c | 4 |
| 295 | C14H180gRu2Sn2                                  | {Ru(SnMe3)(CO), }2                                                                                | Tri | PĪ    | 1 |
| 3   | Cl&H20CrX60                                     | Cr(CO) 4 [C(SHeCH <sub>2</sub> ) <sub>2</sub> ] <sub>2</sub>                                      | м   | P21/c | 4 |
| 169 | C14H22M0N2 <sup>21</sup> 2F6P                   | [Mo(NH3)(HNCMEEL)(C5H5)2](PF6)2                                                                   | H   | P21/c | 4 |
| 100 | С14828H0820S6                                   | Mo0(S2) (S2CNPT2) 2                                                                               | Ħ   | 221/c |   |
| 224 | C14H37B10N3Pd                                   | 1,1-(Bu <sup>C</sup> NC) <sub>2</sub> -2-NHe <sub>3</sub> -1,2-PdCB <sub>10</sub> H <sub>10</sub> | × M | P21/n | 4 |

98

C<sub>13</sub>

|           |             |             |          |            |          |      |      |      | 99  |
|-----------|-------------|-------------|----------|------------|----------|------|------|------|-----|
|           |             |             |          | •          |          |      |      |      |     |
| 9.353(7)  | 9.893(7)    | 17.923(10)  |          |            |          | 1922 | 6.3  |      | 95  |
| 9.3171(9) | 35.8136(35) | 11.9616(10) |          | 97.06(1)   |          | 3702 | 2.41 | 3.45 | 96  |
| 10.437(1) | 12.711(1)   | 11.646(1)   |          |            |          | 2841 | 5.3  |      | 97  |
| 7.80(1)   | 11.15(1)    | 8.74(1)     | 106.4(3) | 104.53(33) | 103.3(3) | 1392 | 3.7  |      | 98  |
| 13.596(6) | 9.968(3)    | 10.008(4)   |          |            |          | 294  | 4.6  | 5.3  | 99  |
| 6.854(5)  | 18.645(10)  | 9.864(7)    |          | 93.1(2)    |          | 1884 | 4.0  |      | 100 |
| 12.810(5) | 9.054(3)    | 11.855(4)   |          | 103.09(3)  |          | 1684 | 6.6  | 7.5  | 101 |
| 9.298(5)  | 26.614(19)  | 9-543(8)    |          | 121.00(5)  |          | 1512 | 5.17 | 5.67 | 102 |
|           |             | -<br>-      | •        |            |          |      |      |      | •   |
|           |             |             |          |            |          |      |      |      |     |
| •         |             |             |          |            |          |      |      |      |     |
| 9,591(2)  | 11,994(3)   | 14.876(14)  |          | 99.57(2)   |          | 2114 | 5.4  |      | 103 |

| 9.591(2)      | 11.994(3)  | 14.876(14)  |           | 99.57(2)   |           | 2114 | 5.4  |     | 103 |
|---------------|------------|-------------|-----------|------------|-----------|------|------|-----|-----|
| 11.93(1)      | 8-258(8)   | 7_729(8)    |           |            |           | 3687 | 3.2  |     | 104 |
| 10.096(3)     | 23.825(8)  | 11.472(4)   |           |            |           | 1252 | 8.64 |     | 105 |
| 7.5135(5)     | 8.5100(6)  | 12.8393(8)  | 72.132(6) | 85.877(6)  | 83.514(8) | 2984 | 4.2  | 5.1 | 106 |
| 6.485(2)      | 18-465(2)  | 11.639(3)   | -         |            |           | 871  | 4.3  | 5.4 | 107 |
| 5.871(1)      | 12.575(2)  | 18.731(3)   |           |            |           | 447  | 7.6  |     | 108 |
| 7.00(2)       | 15.45(3)   | 20.50(6)    |           | 97.0(5)    |           | 1754 | 12.8 |     | 109 |
| 10.2260(7)    | 6.3869(27) | 14.7800(19) | 78.48(2)  | 131.049(8) | 87.16(3)  | 2160 | 5.4  |     | 110 |
| 9_299         | 13.686     | 12.746      | •         | 94.03      |           | 1984 | 6.8  |     | 111 |
| 6.886(1)      | 7.916(2)   | 11.358(2)   | 90.30(2)  | 107.73(1)  | 82.93(1)  | 1791 | 2.4  | 2.6 | 112 |
| 9_888(2)      | 15.806(3)  | 12.382(2)   |           | 118.87(2)  |           | 1225 | 3.4  |     | 113 |
| 9.647(6)      | 18.394(10) | 13.988(5)   |           | 121.05(5)  |           | 3305 | 5.5  |     | 114 |
| 12.033(3)     | 11.813(3)  | 19.924(4)   |           | 125.04(2)  |           | 1166 | 7.6  |     | 116 |
| 10.947(3)     | 15.194(4)  | 15.804(4)   |           | 103.45(2)  |           | 3319 | 4.2  | 5.2 | 117 |
|               |            |             |           |            |           |      |      |     |     |
| References p. | 132        |             |           |            |           |      | ·    |     |     |
|               |            |             |           |            | •         |      | •    |     |     |

225 CLAHA6BEPAPt2 8

A2/a

Ħ

#### (Me 3P) 2-7,8,10-CPtCB8H10

### <sup>c2</sup> C<sub>8</sub>H<sub>8</sub>O = 2,3-n<sup>2</sup>:4,5,6-n<sup>3</sup>-cycloocta-2,4-dienone-6,7-diyl.

<sup>b</sup> C<sub>8</sub>H<sub>10</sub>O = 2.3.4-n<sup>3</sup>:5.6-n<sup>2</sup>-7-oxo-3.5-octadien-2.2-diyl.

C<sub>15</sub> 264 C15H.015Re.2-.2C8H20N+ (MEt,)2{Re,H,(CO)15} н P21/c 4 Hn(CO) 3(C5H4COPh) PZ1/c C15H9 1004 н 4 -Fe2(CO)6(C9H10)<sup>2</sup> РĪ 2 251 C15H10Fe206 Tri z 142 C15H15FU UF(C5H5)3 Rhomb R3m Hex Fe(C5H,C5H8C5H,) 8 189 C15H16Fe o Pbca 135 C15H16FeO3 Fe(CO) 3(C12H16) м P21 2 **Z**2 C15H32I203P4W WI2(CO)3(dmpe)2 PZ1/n м 4 Ħ P21/a 16

<sup>a</sup> C<sub>9</sub>H<sub>10</sub> = 1,2,6-n<sup>3</sup>:3,4,5-n<sup>3</sup>-bicyclo[6.1.0]mona-1,3,5-triene. <sup>b</sup> 1,1'-(1",3"-cyclopentylene)ferrocene.

<sup>°</sup> C<sub>12</sub>H<sub>16</sub> = tricyclo[6.4.0.0<sup>2</sup>,<sup>7</sup>]dodeca-3,5-diene.

# с<sub>16</sub>

| 5   | CleHsAsCr2010     | [Cr(CO) <sub>5</sub> ] <sub>2</sub> AsPh                                                                                         |     |               |   |
|-----|-------------------|----------------------------------------------------------------------------------------------------------------------------------|-----|---------------|---|
| 80  | CléHaFeOu         | Fe(CO) <sub>4</sub> (C <sub>12</sub> H <sub>B</sub> ) <sup>C</sup>                                                               | м   | <b>P2</b> 1/c | 4 |
| 77  | C15H8FeO5         | Fe(CO), (C <sub>12</sub> H <sub>8</sub> O) <sup>5</sup>                                                                          | н   | P21/n         | 4 |
| 282 | C16H10Cl2Cr206Sa  | [Cr(CO) 3(C5H5) ]2SaCI2                                                                                                          | м   | P21/n         | 4 |
| 44  | C16H10Cr06        | Cr(CO)5[C(C2Pb)(OEt)]                                                                                                            | н   | P21/c         | 4 |
| 247 | C16H10F602Kh2     | Rb <sub>2</sub> (CO) <sub>2</sub> [C <sub>2</sub> (CF <sub>3</sub> ) <sub>2</sub> ](C <sub>5</sub> H <sub>5</sub> ) <sub>2</sub> | Trí | РĨ            | 2 |
| 242 | C16H13CoFe0.      | (C5H5)FeCo(CO)4(C7H8)                                                                                                            | н   | ₽21/c         | 4 |
| 256 | C16H14Fe207       | Fe2(CO)6(C10H140) <sup>C</sup>                                                                                                   | H   | PZ1/n         | 4 |
| 305 | C16H15BC12C03BD10 | Co3(COBC12EEt3)(CO)9                                                                                                             | Tri | PĪ            |   |

|            |            |            | -        | •         |           |      |      |     | 101 |     |
|------------|------------|------------|----------|-----------|-----------|------|------|-----|-----|-----|
| 29.143(16) | 10.058(7)  | 21.935(7)  |          | 90.54(4)  |           | 3153 | 7.6  |     |     | 38  |
|            |            |            |          |           |           |      |      |     |     |     |
|            |            |            |          |           |           |      |      |     |     |     |
|            |            |            |          |           |           |      |      |     |     |     |
|            |            |            |          |           |           |      |      |     |     | •   |
|            |            |            |          |           |           |      |      |     |     |     |
| 11.60(1)   | 20.68(2)   | 17.97(2)   |          | 95.9(1)   |           | 777  | 8.7  |     |     | 118 |
| 12.47      | 6.42       | 16.49      |          | 96.7      |           |      |      |     | CD  | 52  |
| 7.229(4)   | 14.699(4)  | 7.696(2)   | 87.53(2) | 113.48(3) | 102.08(2) | 2651 | 3.4  | 3.3 |     | 119 |
| 8.156      |            |            | 114.23   |           |           |      |      |     |     | 120 |
| 13.698(4)  |            | 5.980(2)   |          |           |           | 763  | 3.04 |     |     | 120 |
| 16.250(7)  | 14.266(5)  | 10.337(2)  |          |           |           | 1570 | 5.7  | 5.7 |     | 121 |
| 6.176(1)   | 11.307(2)  | 9.781(2)   |          | 92.89(2)  |           | 1733 | 5.5  | 3.4 |     | 122 |
| 11.701(6)  | 15.680(9)  | 9.316(5)   |          | 95.36(5)  |           | 2226 | 7.2  |     | •   | 123 |
| 25.772(14) | 15.514(13) | 17.432(14) |          | 91.59(8)  |           | 3250 | 6.3  |     |     | 123 |

|              |            |            |           |           |           |      | 5.8 |     | SD | 124 |
|--------------|------------|------------|-----------|-----------|-----------|------|-----|-----|----|-----|
| 6.731(1)     | 21.311(2)  | 9.919(1)   |           | 99.716(9) |           | 1869 | 3.4 | 4.9 |    | 125 |
| 9-446(3)     | 6.382(2)   | 23.464(4)  |           | 91.58(2)  |           | 1731 | 6.4 | 8.1 |    | 126 |
| 10.314(12)   | 15.646(20) | 12.223(12) |           | 93.25(10) |           | 3458 | 5.7 | 8.6 |    | 127 |
| 7.188(8)     | 12.313(1)  | 18.778(1)  |           | 93.9(1)   |           | 795  | 8.8 |     |    | 128 |
| 9.322(5)     | 12.139(6)  | 8.671(5)   | 103.60(5) | 68.98(5)  | 109.87(5) | 2101 | 6.0 |     |    | 129 |
| 18.013(27)   | 6.553(17)  | 13.031(37) |           | 103.2(1)  |           | 3936 | 6.3 | 7.5 |    | 130 |
| 10.025(4)    | 11.167(4)  | 16.482(8)  | • •<br>•  | 101.94(3) |           | 1930 | 6.6 |     |    | 131 |
| 13.57        | 13.52      | 13.33      | 90.50     | 94.44     | 85.83     | 2724 | 5.9 |     |    | 132 |
|              |            |            |           |           |           |      |     |     |    |     |
| References p | . 132      |            | 1         |           |           |      |     |     |    |     |
|              |            |            |           | •         |           |      |     |     |    |     |

| 292                            | C16H18As3F5m206                                                                                                                                                       | Mn2(CO)6[C4F5(AsMe2)3]                                                                                             | Trí  | РĨ                 | 2   |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------|--------------------|-----|
| 245                            | C16H18Fe205                                                                                                                                                           | Fe <sub>2</sub> (CO) <sub>6</sub> (C <sub>2</sub> Bu <sub>2</sub> <sup>C</sup> )                                   | м    | P21/0              | . 4 |
| 126                            | C15H1906Bh                                                                                                                                                            | Rh(acac)[C7H6(CO2He)2]                                                                                             | м    | P21/c              | 4   |
| 212                            | C16H20Ag+.CIO.                                                                                                                                                        | (0-Me2C6H4) 2AgC104                                                                                                | Tri  | PĪ                 | · 2 |
| -129                           | C1632484F4K1                                                                                                                                                          | N1[C,Me,(BF)2]2                                                                                                    | м    | C2/c               | 4   |
| 60                             | C16H30Cl2PdS2                                                                                                                                                         | PdC1(CBu <sup>t</sup> :CHCH:CC1Bu <sup>t</sup> )[MeS(CH <sub>2</sub> ) <sub>2</sub> SMe]                           | Trig | RJ                 | 18  |
| 19                             | С <sub>16</sub> н <sub>36</sub> СІ <sub>3</sub> мо <sub>2</sub> 0 <sub>16</sub> Р <sub>ч</sub> - <sup>D+</sup> С <sub>2</sub> н <sub>6</sub> СІ 460 4 Р <sup>D-</sup> | {Ho <sub>2</sub> Cl <sub>3</sub> (CO), {P(O%e) <sub>3</sub> ], } -<br>{HoOCl <sub>4</sub> {OP(O%e) <sub>2</sub> }} | Tri  | ΡĪ                 | 2   |
| 220                            | C16H.3B7P2Pt                                                                                                                                                          | 2,7-M2-9,9-(PEt3)2-2,7,9-C2Pt87H7                                                                                  | м    | P2 <sub>1</sub> /a | . 4 |
| 219                            | C <sub>16</sub> H <sub>45</sub> B <sub>7</sub> NiP <sub>2</sub>                                                                                                       | 6,6-(Et <u>1</u> P)2-5,9-122-6,5,9-11C287H9                                                                        | н    | P21/n              | 4   |
| 281                            | C16F18N1.04                                                                                                                                                           | Ni4(CO)4[C2(CF3)2]3                                                                                                | M    | P21/m              | 2   |
| 272                            | C16I0168572-2C9H208 <sup>+</sup>                                                                                                                                      | (NEt_) <sub>2</sub> [Rh <sub>7</sub> I(CO) <sub>16</sub> ]                                                         | Tri  | PĪ                 | 2   |
| <sup>c</sup> C <sub>12</sub> E | $I_3 = \eta^2$ -acenaphthylene. $b C_{12} H_8 Fe0 = \eta$                                                                                                             | aphtho[b]ferracyclopent-3-en-2-one.                                                                                |      | -<br>-             |     |

<sup>°</sup> C<sub>10</sub>H<sub>14</sub>0 = 1,2,3-n<sup>3</sup>(Fe<sup>1</sup>):3,4,5-n<sup>3</sup>(Fe<sup>2</sup>)-2-Me-4-Bu<sup>L</sup>-5-oxopenta-1,3-diene-1,3,5-triyl.

C<sub>17</sub>

| 165 | C17H10Fe206                                                                                     | Fe2(CO)5[COC6H5C5H4] <sup>2</sup>                                                          | м   | P21/c | 4 |
|-----|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----|-------|---|
| 203 | C <sub>17</sub> H <sub>17</sub> F <sub>6</sub> IrO <sub>2</sub>                                 | $Ir(hfac)(C_{12}H_{16})^b$                                                                 | я   | C2/c  | 4 |
| 51  | C <sub>17</sub> H <sub>37</sub> Cl <sub>2</sub> N <sub>4</sub> Ta.C <sub>6</sub> H <sub>6</sub> | TaCl_He {MeC(SPr <sup>1</sup> ) <sub>2</sub> } <sub>2</sub> .C <sub>E</sub> H <sub>6</sub> | H   | P21/n | 4 |
| 134 | C17F17MnO3S                                                                                     | $M_{m}(CO)_{3}[(C_{4}F_{6})_{2}SC_{5}F_{5}]$                                               | Tri | PĨ    | 2 |

.

<sup>C</sup>  $COC_6H_5C_5H_4 = 1 - (n^5 - cyclopentadienyl) - 2, 3, 4, 5 - n^4 - cyclohexa - 2, 4 - dien - 1 - oyl.$ 

<sup>b</sup> C<sub>12</sub>H<sub>16</sub> = 1,2,2'-n<sup>3</sup>:7,7',8-n<sup>3</sup>-(2,3,6,7-tetramethylene)octane-1,8-diyl.

C<sub>18</sub>

| 69  | C <sub>18</sub> H <sub>13</sub> IN <sub>2</sub> PtS <sub>2</sub> | PtI(C,H2SC5H,N)(C9H7NS) <sup>a</sup> | м | ₽2 <sub>1</sub> /¤ | 4 |
|-----|------------------------------------------------------------------|--------------------------------------|---|--------------------|---|
| 73  | C18H14F12O4Pd                                                    | Pd(acac C4F6)2                       | Ħ | ₽Z1/n              | 4 |
| 186 | C <sub>18</sub> H <sub>16</sub> FeO                              | FeCOCH <sub>2</sub> Ph               | 0 | P212151            |   |

|              |            |            |            |           |           |               | 103 |
|--------------|------------|------------|------------|-----------|-----------|---------------|-----|
| 9.580(4)     | 15.279(6)  | 9.292(4)   | 93.07(2)   | 119.26(2) | 82.80(2)  | 2233 7.8      | 133 |
| 13.824(4)    | 9.776(3)   | 13.826(5)  |            | 94.26(2)  |           | 1848 7.6      | 131 |
| 9.245(4)     | 9-003(4)   | 21.680(15) |            | 113.41(5) |           | 3010 6.60 6.9 | 134 |
| 8.595 (1)    | 10.766(1)  | 10.817(1)  | 86.21(1)   | 103.28(1) | 113.70(1) | 1236 10.3     | 135 |
| 17.569(3)    | 6.671(1)   | 17.270(3)  |            | 116.06(1) |           | 2165 5.7      | 136 |
| 25.62        |            | 18.32      |            |           |           | 1306 7.0      | 137 |
| 11.714(13) . | 15.493(12) | 15.038(13) | 117.06(10) | 99.43(13) | 96.96(14) | 3066 7.7      | 138 |
|              |            |            |            |           |           |               |     |
| 17.23(1)     | 18.86(1)   | 10.093(6)  |            | 126.96(4) |           | 3185 3.5 4.3  | 139 |
| 9-144(2)     | 18.954(5)  | 15.021(3)  |            | 90.51(4)  |           | 3192 6.8 8.0  | 140 |
| 8.506(2)     | 16.05(1)   | 9.011(4)   |            | 100.52(3) |           | 1033 12       | 103 |
| 20.06(2)     | 11.08(1)   | 10.42(1)   | 83.14(8)   | 96.46(8)  | 102.06(8) | 2532 5.6 7.6  | 141 |
|              |            |            |            |           |           |               |     |

| 6.562(1)   | 21.690(5)  | 11.399(2)  |           | 96.78(2)   |          | 2852 | 5.02 | 4.24 | 142 |
|------------|------------|------------|-----------|------------|----------|------|------|------|-----|
| 9.850(2)   | 21.452(8)  | 8.583(2)   |           | 96.91(2)   |          |      | 6.4  |      | 143 |
| 11.772(12) | 16.250(13) | 15.632(13) |           | 109.98(12) |          | 1748 | 7.9  |      | 144 |
| 7.889(6)   | 11.737(8)  | 12.195(9)  | 91.45(10) | 69.71(10)  | 81.55(9) | 3229 | 4.5  |      | 95  |

| 17.360(3) | 8.418(1)   | 13.556(2) | 110.53(2) | 2220  | 4.6 | 6.1 | 145 |
|-----------|------------|-----------|-----------|-------|-----|-----|-----|
| 9.512(7)  | 23.294(13) | 11.301(9) | 114.9(2)  | 4302  | 5.7 | 6.9 | 146 |
| 9.47(4)   | 14.57(6)   | 9.94(4)   |           | - 724 | 9   | •   | 147 |

References p. 132

| 104   |                                                                                  |                                                                                                           |             |                    |    |
|-------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------|--------------------|----|
| 198   | C18H18BN8Ru <sup>+</sup> .F6P                                                    | { <b>Bu{B(pz)</b> , ](C <sub>6</sub> H <sub>6</sub> )} <b>PF</b> <sub>6</sub>                             | 0           | Caca               | 8  |
| 119   | C18H18F18N105P2                                                                  | NIC6 (CF3) 6 [P(0%) 3]2                                                                                   | , O         | Pbcn               | 4  |
| 75    | C18H19F6N02Pd                                                                    | Pd(C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> NMe <sub>2</sub> )(acac C <sub>4</sub> F <sub>6</sub> )  | м           | P21/c              | 4  |
| 23ú   | C18H19Fe2N03                                                                     | Fe <sub>2</sub> (CO) <sub>3</sub> (CNBu <sup>1</sup> )(C <sub>5</sub> H <sub>5</sub> ) <sub>2</sub>       | 0           | P212151            | 4  |
| 130   | C18H20F6Pt                                                                       | PtHe[C7H5(CF2)2](cod)                                                                                     | м           | P21/n              | 4  |
| - 27  | C18H22C12O2P2Rh2                                                                 | [RhC1(CO)(PHe2Ph)]2                                                                                       | Tri         | PĨ                 | 2  |
| 297   | C1882405842512                                                                   | Ru <sub>2</sub> (SiMe <sub>3</sub> ) (CO) <sub>5</sub> (C <sub>7</sub> H <sub>6</sub> SiMe <sub>3</sub> ) | . 0         | P212121            | .4 |
| 298   | C18H26048u2S12                                                                   | •<br>Ru2(5114e3) (CO) u (C8H8514e3)                                                                       | Tri         | рĩ                 | 2  |
| 267   | C <sub>18</sub> H <sub>28</sub> Co <sub>3</sub> FeO <sub>18</sub> P <sub>3</sub> | FeCo3H(CO)9[P(O‰)3]3                                                                                      | н           | P21/c              | 4  |
|       |                                                                                  |                                                                                                           |             | •                  |    |
| 233   | C18H28H02H2S2                                                                    | Mo2S2(NBu <sup>E</sup> )2(C5H5)2                                                                          | м           | P21/n              | 2  |
| 301   | C18In2O13Re.                                                                     | $\operatorname{Re}_{2}(\operatorname{CO})_{\partial}[\operatorname{InRe}(\operatorname{CO})_{5}]_{2}$     | H           | P2 <sub>1</sub> /n | 2  |
| ∝ сэн | 735 = 2-thienylpyridine. <sup>b</sup> C                                          | 7H5(CF3)2 = 7-7 <sup>1</sup> -1,2-(CF3)2-bicyclo[2.2.1]h                                                  | eptadienyl. | •                  |    |

|     | C <sub>19</sub>                            |                                                                        |     |         |        |
|-----|--------------------------------------------|------------------------------------------------------------------------|-----|---------|--------|
| 179 | С19H12F12Hox,                              | 10[(p2)2C3(CF3)3CH(CF3)](C5H5)                                         | м   | P21/n   | 4      |
| 136 | C19H16O3Ru                                 | Ru(CO) 3(C16H16) <sup>C</sup>                                          | M   | P21/n   | 4      |
| 117 | C19H20FeO11                                | Fe(CO) 3(C16H2008)                                                     | 0   | P212121 | 8      |
| 23  | C19H22BrHnO7P2                             | fac-trans-Mabr (CO) 3[P(OM=) 2Pb]2                                     | • 0 | P212121 | 4      |
| 24  | C19H22BrHm07P2                             | mer-trans-Habr(CO)3[P(Otte)2Ph]2                                       | н   | P21/n   | 8      |
| 172 | C19H22D                                    | U(C,H7)(C5H5)3                                                         | ο`  | P212121 | 4      |
| 299 | C19H2+O5Eu2Si2                             | Ru2(CO)5[Me2S1(CH2)2S1Me2C6H8]                                         | Tri | pĩ      | 2      |
| 239 | C19H24F50PT2                               | Pt2(cod)2[(CF3)2CD]                                                    | н   | P21/c   | 4      |
| 173 | C198240                                    | UBu(C5H5) 3                                                            | 0   | P212121 | 4      |
| 171 | C19H25BB6Bh <sup>+</sup> .F6P <sup>-</sup> | { <b>B</b> b(C <sub>5</sub> He <sub>5</sub> ){HB(p2)3}}PF <sub>6</sub> | н   | PZ1/c   | 4      |
| 226 | C19H+5BaCoP2Pt                             | 1~(C5H5)-8.8-(PEt3)2-1,2,7,8-                                          | 0   | P212121 | 4      |
|     |                                            | CoC2PtB6H10                                                            |     |         | Sherin |
|     |                                            |                                                                        |     |         |        |

| 13.472(5) | 22.034(4)  | 14.718(2)  |           |            |           | 742  | 5.8 | 6.2 |     | 148 |
|-----------|------------|------------|-----------|------------|-----------|------|-----|-----|-----|-----|
| 17.355(5) | 11.014(3)  | 15-026(5)  |           |            | ÷.,       | 804  | 5.0 | 5.4 |     | 149 |
| 8.789(7)  | 13.186(10) | 17.237(14) |           | 102_4(2)   |           | 3748 | 3.4 | 4.2 |     | 146 |
| 6.649(11) | 13.062(35) | 20.553(52) |           |            |           | 1447 | 7.2 |     |     | 150 |
| 23.63(1)  | 8.354(4)   | 8.935(4)   |           | 93-20(1)   |           | 1483 | 9.5 |     |     | 151 |
| 10.495(9) | 12.086(9)  | 10.337(7)  | 112.71(4) | 97.50(4)   | 103.69(4) | 2370 | 3.7 | 4.9 |     | 152 |
| 10.355(2) | 12.380(5)  | 17.580(5)  |           | •          |           | 2024 | 4.9 |     |     | 153 |
| 6_903(3)  | 7.669(3)   | 24.45(1)   | 92.41(3)  | 89.87(3)   | 116.45(3) | 3600 | 7.0 |     |     | 154 |
| 15.992(6) | 10.638(3)  | 18.403(4)  |           | 98.515(25) |           | 6057 | 6.1 |     | 134 | 155 |
| 16.336(3) | 10.896(2)  | 18.583(2)  |           | 97.259(12) |           |      |     |     | 298 | 155 |
| 15.486(2) | 8.839(1)   | 7.787(1)   |           | 93.882(5)  |           | 1244 | 2.4 | 4.2 |     | 156 |
| 6.788(2)  | 16.352(3)  | 12.519(3)  |           | 89.23(5)   |           | 3301 | 4.8 |     |     | 157 |
|           |            |            |           |            |           |      |     |     |     |     |

| 8.242(4)     | 17.537(9) | 14.651(7)  |           | 97.62(5)           | 2512 6.5     | 158 |
|--------------|-----------|------------|-----------|--------------------|--------------|-----|
| 12.801(4)    | 6.640(1)  | 19.678(5)  |           | 103.06             | 1991 3.6     | 159 |
| 15.646(2)    | 23.941(2) | 11.033(1)  |           |                    | 2779 5.1 6.1 | 160 |
| 17.19(2)     | 16.71(2)  | 8.27(1)    |           | •                  | 1498 4.1 4.8 | 161 |
| 14.94(2)     | 24.94(3)  | 13.34(1)   |           | 109.6(2)           | 3191 11.6    | 161 |
| 10.240(4)    | 8.747(4)  | 18.198(4)  |           |                    | 3470 6.4 6.5 | 162 |
| 11.851(2)    | 8.761(2)  | 11.864(2)  | 100.54(2) | 110.37(1) 92.25(1) | 3658 6.6     | 154 |
| 9.917(3)     | 14.957(6) | 13.358(3)  |           | 102.18(2)          | 2215 4.0     | 163 |
| 8_64(1)      | 22.69(2)  | 8.66(1)    |           |                    | 1290 5.4     | 164 |
| 11.852(10)   | 14.962(5) | 13.125(8)  | •         | 92.27(8)           | 1448 11.7    | 148 |
| 18.654(8)    | 14.41(1)  | 12.800(35) |           |                    | ~8           | 117 |
|              |           |            |           |                    |              |     |
| References p | . 132     |            |           |                    |              |     |

<sup>6</sup> C<sub>15</sub>H<sub>16</sub> = 1,2,3,4-n<sup>4</sup>-tetracyclo[4.4.2.0<sup>5</sup>.<sup>16</sup>0<sup>5</sup>.<sup>15</sup>]hexadeca-1,3.8,10,13-pentane.

 $\frac{b}{c_{15}H_{23}O_8}$  = cyclobutadiene-dimethyl maleate adduct.

с<sub>20</sub>

| 290 | C <sub>20</sub> H <sub>2</sub> Mn <sub>4</sub> O <sub>20</sub> Sn <sub>2</sub>                    | [¥n(CO) <sub>≤</sub> ], Sn <sub>2</sub> H <sub>2</sub>                                                                | м   | C2/e               | 4 |
|-----|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----|--------------------|---|
| 253 | C <sub>20</sub> H <sub>10</sub> F <sub>12</sub> Fe <sub>2</sub> O <sub>2</sub>                    | Fe <sub>2</sub> (CO) [COC <sub>4</sub> (CF <sub>3</sub> ) <sub>4</sub> ](C <sub>5</sub> H <sub>5</sub> ) <sub>2</sub> | 0   | P212121            | 4 |
| 300 | C <sub>20</sub> H <sub>10</sub> FehnO <sub>8</sub> P                                              | MnFe(PPh <sub>2</sub> )(CO);                                                                                          | 0   | Pbcn               | 8 |
| 277 | C <sub>23</sub> H <sub>13</sub> Fe <sub>3</sub> O <sub>7</sub>                                    | $Fe_3(CO)_7(C_2Ph)(C_5H_5)$                                                                                           | Tri | рī                 | 2 |
| 10  | C29H19Hn2N4O8                                                                                     | [%n(CO) <sub>4</sub> (N <sub>2</sub> Ph)] <sub>2</sub>                                                                | Tri | PĪ                 | 1 |
| 159 | C <sub>20</sub> H <sub>15</sub> m <sub>2</sub> O, P                                               | [Hn(CO)2(C5H5)]2PPh                                                                                                   |     |                    |   |
| 146 | C <sub>20</sub> H <sub>20</sub> Cl <sub>4</sub> Ti <sub>2</sub> Zn.2C <sub>6</sub> H <sub>6</sub> | [T1C1(C <sub>5</sub> H <sub>5</sub> ) <sub>2</sub> ] <sub>2</sub> ZnCl <sub>2</sub> .2C <sub>6</sub> H <sub>6</sub>   | 0   | Pbcn               | 4 |
| 177 | C <sub>20</sub> H <sub>20</sub> Hf                                                                | HfMe2(C9H7)2                                                                                                          | 0 - | P21212             | 2 |
| 175 | C <sub>23</sub> H <sub>20</sub> T1                                                                | T1%2(C9H7)2                                                                                                           | 0   | P21212             | 2 |
| 176 | C <sub>20</sub> H <sub>20</sub> Zr                                                                | Zr¥e2(CeH7)2                                                                                                          | 0   | P21212             | 2 |
| 154 | C <sub>20</sub> H <sub>20</sub> Al <sub>2</sub> O <sub>5</sub> W <sub>2</sub>                     | {W(CO)_Z(COALME_2)(C5H5)]2                                                                                            | м   | C2/c               | 4 |
| 279 | C20H24C04                                                                                         | C04#4(C5# <u>5</u> )4                                                                                                 | м   | C2/c               | 8 |
| 98  | C20H27BN, PL                                                                                      | $PtHe(MeC_2Ph)[Et_2B(pz)_2]$                                                                                          | M   | 72:/c              | 4 |
| 145 | C20H39C12T1                                                                                       | TiCl2(C5He5)2                                                                                                         | o   | P212151            | 4 |
| 227 | C <sub>20</sub> H <sub>37</sub> B <sub>3</sub> P <sub>2</sub> Pt                                  | 1,1-(PhHe2P)2-2,4-He2-1,2,4-FtC2B9H3                                                                                  | Tri | РĪ                 | 2 |
| 67  | C20H38C13N2P2P2+.C104                                                                             | {PtCl2{C(NHC6H3Cl)(NHM2)](PEt3)2}ClO                                                                                  | ÷   | ₽21/a              | 4 |
| 48  | C20H42TaC6H4LIN2+                                                                                 | Li(dmp) [Ta(CBu <sup>t</sup> )(CH <sub>2</sub> Bu <sup>t</sup> ) <sub>3</sub> ]                                       | 0   | P212121            | 4 |
| 308 | C20019Rha                                                                                         | £h <sub>6</sub> C(CO)                                                                                                 | Tri | PĪ                 | z |
|     | c <sub>21</sub>                                                                                   |                                                                                                                       |     |                    |   |
| 199 | C <sub>21</sub> H <sub>14</sub> CrO <sub>3</sub>                                                  | Cr (CO) 3 (C5H4CPh2)                                                                                                  | M   | P2 <sub>1</sub> /a | 4 |
| 157 | C <sub>21</sub> H <sub>15</sub> HnO <sub>3</sub>                                                  | $H_{2}(C0)_{2}(CPh(COPh))(C_{5}H_{5})$                                                                                | M   | P21/n              | 4 |
| 257 | C <sub>21</sub> H <sub>16</sub> O <sub>5</sub> Bu                                                 | Ru2(CO) <sup>5</sup> (C <sup>16</sup> H <sup>16</sup> ) <sup>C</sup>                                                  | M   | P2 <sub>1</sub> /n | 8 |
| •   |                                                                                                   |                                                                                                                       |     |                    |   |

| 15.71(5)      | 17.18(5)   | 12.51(5)   |           | 107.3(2)  |           | 2968 | 20   |      |    | 165     |
|---------------|------------|------------|-----------|-----------|-----------|------|------|------|----|---------|
| 9.446(3)      | 13.708(6)  | 15.748(6)  |           |           |           |      | 4.6  |      |    | 83      |
| 16.768(9)     | 17.020(9)  | 15.359(8)  |           |           |           | 1331 | 8.0  |      |    | 166     |
| 12.635        | 9.457      | 9.033      | 94.64     | 109.10    | 99-60     | 2488 | 3.8  |      |    | 167     |
| 7.2358(13)    | 8.8893(17) | 9.4677(18) | 80.52(2)  | 77.38(1)  | 71.44(1)  | 1974 | 3.43 | 3.61 |    | 168     |
|               |            |            |           |           |           |      | 5    |      | SD | 169     |
| 18.236(10)    | 15.513(8)  | 11.237(6)  |           |           |           | 1396 | 7.1  | 4.9  |    | 170     |
| 14.243(6)     | .8.215(4)  | 6.918(4)   |           |           |           | 965  | 3.0  | 3.9  |    | 171     |
| 14.124(7)     | 8.073(5)   | 6.844      |           |           |           | 280  | 7.0  | 7.8  |    | 171     |
| 14.248(4)     | 8.244(3)   | 6.929(3)   |           |           |           | 904  | 2.5  | 3.0  |    | 171     |
| 18.120(4)     | 6.188(2)   | 22.266(5)  |           | 93.29(2)  |           | 1175 | 4.2  | 5.1  |    | 172     |
| 27.68(2)      | 9.05(1)    | 15.25(1)   |           | 101.97(8) |           | 1802 | 5.9  |      |    | 173     |
| 13.239(6)     | 11.077(5)  | 15.619(7)  |           | 114.53(2) |           | 3289 | 3.62 | 3.55 |    | 174     |
| 10.816(1)     | 8.132(1)   | 22.259(1)  |           |           |           | 1429 | 3.2  |      |    | 175     |
| 9.324(3)      | 10.285(4)  | 14.208(8)  | 100.40(4) | 94.32(4)  | 98.95(3)  | 4073 | 3.3  | 4.0  |    | 176,177 |
| 13.451(2)     | 21.381(5)  | 13.368(2)  |           | 130.73(1) |           | 3811 | 4.8  |      |    | 178     |
| 17-196(6)     | 17.512(4)  | 10.503(3)  |           |           |           | 2192 | 7.1  |      |    | 179     |
| 9.18(1)       | 17.76(2)   | 10.46(1)   | 75.95(10) | 69.07(10) | 92.37(10) | 3423 | 2.34 |      |    | 180     |
|               |            |            |           |           |           |      |      |      |    | -       |
| 20.008(6)     | 6.504(2)   | 13.064(4)  |           | 94.36(2)  |           | 1019 | 9.6  |      |    | 181     |
| 7.11(2)       | 10.87(2)   | 21.94(2)   |           | 93.5(2)   |           | 799  | 8.5  |      |    | 182     |
| 7.010(1)      | 24.965(8)  | 22.021(7)  |           | 101.03(2) |           | 4179 | 5.6  |      |    | 183     |
| References p. | 132        |            | · · · · · |           |           |      |      |      |    |         |
|               |            |            |           |           |           | •    |      |      |    |         |

| 118 | C21H17F12O5PRu                                                     | $\mathbb{E}_{u}(CO)_{2}[P(OCH_{2})_{3}CH_{2}](C_{6}H_{8})(C_{4}F_{6})_{2}$                                                              | H   | P21/c   | . 4 |
|-----|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-----|
| 137 | C <sub>21</sub> B <sub>18</sub> O <sub>3</sub> BuS1                | Ru(CO) 3(CHCPhSiMe2CPhCH)                                                                                                               | н   | 12/c    | 8   |
| 72  | C21H19F12Ir02                                                      | Ir(cod C <sub>4</sub> F <sub>6</sub> )(acac C <sub>4</sub> F <sub>6</sub> )                                                             | Tri | Pī      | 2   |
| 153 | С21H19HoN202 <sup>+</sup> .F6₽ <sup>-</sup>                        | (+)-[Mo(CO) <sub>2</sub> (C <sub>14</sub> H <sub>14</sub> N <sub>2</sub> )(C <sub>5</sub> H <sub>5</sub> )]PF <sub>6</sub> <sup>b</sup> | O   | P212151 | 4   |
| 166 | C21H20Fe2O5                                                        | $Fe_{2}(CO)_{5}(C_{6}H_{4}Me_{2})_{2}^{C}$                                                                                              | н   | P21/c   | 4   |
| 59  | C <sub>21</sub> H <sub>21</sub> C1N <sub>2</sub> O <sub>3</sub> Pd | PdC1 (CH2COCH2COCH2Ph) (py)2                                                                                                            | Tri | pī      | 2   |
| 252 | C <sub>21</sub> H <sub>27</sub> Fe <sub>2</sub> O5P                | Fe2(CO)5(PEt3)(C10H12)                                                                                                                  | 0   | P212121 | 4   |
| 180 | C2182822 .F6P                                                      | [Wme(CH2CH2PMe2Ph)(C5H5)2]PF6                                                                                                           | o   | Pbca    | 16  |
|     | C21830Pd                                                           | Pd(C7H10)3                                                                                                                              | o   | P212121 | 4   |
| 86  | CZ1H30PC                                                           | Pt(C7H10)3                                                                                                                              | 0   | P212151 | 4   |
| - · |                                                                    |                                                                                                                                         |     |         |     |

<sup>a</sup> C<sub>16</sub>H<sub>16</sub> = 3,4,5-n<sup>3</sup>:1,2,6,9,10-n<sup>5</sup>- tricyclo [6.4.2.0<sup>7,16</sup>]hexadeca-1,3,9,11,14-pentaene-5,6-diyl.

 $b = C_{14}H_{14}N_2 = PhCHMeS:CHpy.$   $C = C_6H_4Me_2 = dimethylpentafulvene.$ 

<sup>d</sup> C10H12 = cis-1,2,6-n<sup>3</sup>:3,4,5-n<sup>3</sup>-bicyclo[6.2.0]dodeca-1,3,5-triene. <sup>e</sup> Isostructural with Pt complex.

C<sub>22</sub>

| n 4 |
|-----|
| 2   |
| n 4 |
| 8   |
| 2   |
| 2   |
| c 4 |
|     |

C<sub>23</sub>

| 259 | C <sub>23</sub> H <sub>14</sub> Fe <sub>2</sub> O <sub>5</sub> | Fe2(CO)5(C6H4Ph2) <sup>2</sup> | H . | P21/c 4 | •  |
|-----|----------------------------------------------------------------|--------------------------------|-----|---------|----|
| 260 | C23H1+O5BU2                                                    | 8u2(CO)5(C6H4Fb2) <sup>C</sup> | Tri | PĪ 2    | 2  |
| 255 | C23H2+O2H2                                                     | Rh2(CO) (abd)2(C8H8O)b         | H   | P21/c   | K, |
| 8.875(5)   | 17.841(9)  | 16.517(5)  |          | 94.51(3)  |           | 2418 | 7.7  |     |      | 184 |
|------------|------------|------------|----------|-----------|-----------|------|------|-----|------|-----|
| 11.112     | 8.013      | 27.455     |          | 97.22     |           | 3363 | 4.9  |     |      | 185 |
| 13.415(15) | 11.448(12) | 8_435(9)   | 70.2(4)  | 113.6(5)  | 103-5(5)  | 4642 | 4.8  | 5.0 |      | 186 |
| 12.245(5)  | 9.237(4)   | 20.693(7)  |          |           |           | 2359 | 7.3  | 9.0 |      | 187 |
| 16.039(3)  | 7.935(3)   | 16.057(6)  |          | 109.82(2) | :         | 1773 | 2.71 |     |      | 188 |
| 10.275(2)  | 11.849(3)  | 9.214(2)   | 75.16(2) | 96.70(3)  | 100.02(4) | 2689 | 4.4  |     |      | 189 |
| 13.744(8)  | 13.730(5)  | 11.922(7)  |          |           |           | 1910 | 4.9  | 6.7 |      | 190 |
| 12.286(7)  | 40.813(18) | 18.302(8)  |          |           |           | 3120 | 5.6  |     |      | 191 |
| 5.705(1)   | 10.784(5)  | 28.770(15) | ••       |           |           |      |      |     | e,CD | 30  |
| 5.720(1)   | 10.740(4)  | 28.771(12) |          |           | •<br>. •  | 1695 | 10.6 |     |      | 30  |

9.053(4) 10.812(6) 29.27(12) 97.02(7) 2689 4.1 3.8 192 97.99(6) 113.27(4) 96.13(5) 2661 4.3 6.5 193 11.390(6) 14.257(10) 9.124(6) 92.87(3) 184 8.647(3) 29.650(9) 9.371(3) 3297 5.9 194 16.754(13) 23.211(20) 16.295(8) 1900 9.8 9.2586(16) 13.2849(22) 8.5681(16) 98.062(14) 91.311(14) 83.950(13) 2136 4.38 5.65 195 196 16.08(1) 11.907(5) 9.693(3) 103.04(3) 77.80(4) 94.15(4) 2997 5.2 5.6 4168 4.9 197 12.55(1) 12.03(1) 16.69(2) 96.4(4)

| 14.42     | 6.49      | 21.55     |          | 115.64     | · · ·    | 1408 | 4.4  | 199 |
|-----------|-----------|-----------|----------|------------|----------|------|------|-----|
| 11.557(8) | 10.520(3) | 8.992(3)  | 99.26(2) | 102.26(21) | 98.63(3) | 3165 | 2.74 | 198 |
| 7.473(2)  | 15.156(7) | 17.710(3) |          | 94.30(7)   | -        | 2040 | 3.97 | 188 |

References p. 132

| 174 | C <sub>23</sub> H <sub>24</sub> U                                     | U(CH2C6H,He-p)(C5H5)3                                                    | 0   | Poma  |   |
|-----|-----------------------------------------------------------------------|--------------------------------------------------------------------------|-----|-------|---|
| 74  | С <sub>23</sub> H <sub>25</sub> Cl01, Pd.CHCl3                        | Pd[CC1(CO2Me)C5(CO2Me)LC(0)OHe]-<br>(acac).CHC13                         | M   | ₽21/c | 4 |
| 116 | C <sub>23</sub> H <sub>23</sub> O <sub>2</sub> Pd                     | Pd(acac)(C7HMe5Ph) <sup>C</sup>                                          | Tri | рī    | 2 |
| 34  | C <sub>23</sub> H <sub>40</sub> Cl <sub>2</sub> N <sub>4</sub> O3RuSa | Ru3C12(CO)3(S2CNEt2)4                                                    | Tri | рī    | Z |
| 262 | C <sub>23</sub> H <sub>47</sub> BrP <sub>2</sub> Pd                   | [Pd(PPr3 <sup>1</sup> )] <sub>2</sub> Br(C <sub>5</sub> H <sub>5</sub> ) | н   | PZ1   | z |
|     | •_                                                                    |                                                                          |     |       |   |

<sup>a</sup>  $C_{6H_{2}Ph_{2}}$  = diphenylpentafulvene. <sup>b</sup>  $C_{8H_{8}O}$  = Acyl-2-vinylcyclopent-4-ene.

<sup>c</sup> C<sub>7</sub>HMe<sub>5</sub>Ph = 2,3,4-n<sup>3</sup>-(1,2,3,4,5-Me<sub>5</sub>-6R-Ph-bicyclo[3.2.0]hept-2-enyl).

C<sub>24</sub>

C24H3O24Rh13<sup>2-</sup>.2C36H30NP2+ [N(PPF3)2]2[Rh13H3(CO)24] м P21/c 4 273 0s3(CO)10(C2Ph2) PĪ 2 278 C24H100100s3 Tri P2/n 4 [W(CO)3(C5H5)]3Ga м 287 C24H15GaO9W3 A1 [Mn(CO), (COMe) 2] 3 P2/n 45 C24H18A1Mn3018 м 4 190 C24H22Fe202 {Fe(C5H4)(C5H4Ac)]2 м 221/n 2 Mo(CO)2(C,H7)[Ph2B(pz)2] P21/c 4 115 C24H23BMON4O2 ы [IrCl(cod)(C<sub>4</sub>F<sub>6</sub>)]<sub>2</sub> 2 P21/n 127 C24H24Cl2F12Ir2 м {Ircl[C(CF<sub>3</sub>):CH(CF<sub>3</sub>)](C<sub>8</sub>H<sub>11</sub>)}2.2C<sub>6</sub>D<sub>5</sub> C24H24C12F12Ir2.2C6D6 P21/n 2 192 М C24H24N.P2Pt trans-Pt(C2Me){C[:C(CN)2]CMe-₽21/c 4 64 м [:C<sub>6</sub>H<sub>4</sub>C(CN)<sub>2</sub>])(PMe<sub>3</sub>)<sub>2</sub> 131 C24H24ND .C24H2GAS AsPh<sub>4</sub> [Nb(C<sub>8</sub>H<sub>8</sub>)<sub>3</sub>] M P21/c 4 102 C24H27CIN2PRhS3.CHC13 RhC1(SCNHe2)(S2CNHe2)(PPh3).CHC13 м P21/c 4 141 C24H28C12Yb2 {YbCl(C5H4He)2]2 м C2/c 4 87 C24H30F18P2Pt Pt[C6(CF3)6](PEt3)2 P21/n м 4 258 Fe2(CO)5[(HC2Bu<sup>E</sup>)3CO] C2+H30Fe206 0 Pbca 208 C24H32C1202T12 [TiCl(thf)(C8H8)]2 M P21/c 99 C24H4404Pt Pt{C2[C(OH)Et2]2}2 C2/c н

| 19.64(2)  | 11.81(1)  | 8.19(1)   |           |           |          | 1148 | 5.3 |     | 164 |
|-----------|-----------|-----------|-----------|-----------|----------|------|-----|-----|-----|
| 8.78(1)   | 21.15(2)  | 16.76(2)  |           | 93.0(1)   |          | 2396 | 7.1 | 8.5 | 200 |
|           |           |           |           |           |          |      |     |     |     |
| 15.35(2)  | 8.34(1)   | 14.79(2)  | 100.5(1)  | 141.4(1)  | 97.3(1)  | 4417 | 4.4 |     | 201 |
| 13.904(5) | 13.919(9) | 11.073(5) | 102.09(4) | 109.91(3) | 95.51(4) | 1407 | 6.8 | 6.2 | 202 |
| 13.002(2) | 15.551(2) | 15.734(2) |           | 116.7(1)  |          | 2672 | 3.5 |     | 115 |
|           |           |           |           |           |          |      |     |     |     |
|           |           |           |           |           |          |      | •   |     |     |
|           |           |           |           |           |          |      |     |     |     |

| 15.90(3)     | 26.71(5)   | 25.13(5)   |            | 92.9(2)    |          | 2987 | 8.4  |        |     | 203 |
|--------------|------------|------------|------------|------------|----------|------|------|--------|-----|-----|
| 16.044(3)    | 8.947(3)   | 9.734(3)   | 113.99(5)  | 87.39(5)   | 92.03(5) | 2165 | 8.2  |        |     | 204 |
| 13.464(4)    | 17.724(5)  | 11-296(3)  |            | 101.72(2)  |          | 2791 | 7.8  | 9.7    |     | 205 |
| 13.948(5)    | 12.182(6)  | 19.545(6)  |            | 90.51(2)   |          | 2099 | 4.9  | 7.0    |     | 206 |
| 8.576(15)    | 19.015(15) | 5.826(15)  |            | 103.9      |          | 503  | 10.9 |        |     | 207 |
| 8.837(4)     | 10.785(3)  | 24.170(3)  |            | 97.93(2)   |          | 1677 | 5.2  | 7.1    |     | 208 |
| 9.58         | 12.61      | 12.54      |            | 114.7      |          | 2240 | 4.8  |        |     | 209 |
| 10.97        | 17.96      | 11.63      |            | 127.4      |          | 1755 | 7.1  |        |     | 209 |
| 14.934(2)    | 8.997(1)   | 20.221(3)  |            | 97.44(2)   |          | 1117 | 6.0  |        |     | 210 |
| 12.996(16)   | 22.377(26) | 14.371(23) |            | 115.51(11) |          | 2663 | 7_7  | 6.9    |     | 211 |
| 9.275(7)     | 19.544(12) | 17.153(11) |            | 97.01(4)   | ·        | 1785 | 6.3  |        |     | 212 |
| 20.377(6)    | 9.185(2)   | 13.235(4)  |            | 108.97(2)  |          | 2751 | 3.46 | 3.69   |     | 213 |
| 9.937(6)     | 30.89(1)   | 11.398(8)  | . *        | 117.15(3)  |          | 2154 | 5.7  | 6.9    |     | 214 |
| 14.12(1)     | 19.99(1)   | 17.38(1)   |            |            |          | 2474 | 4.7  |        |     | 215 |
| 10.779(1)    | 14.304(1)  | 15.478(3)  |            | 100.84(2)  |          | 9206 | 5.88 | 5.44 1 | 100 | 216 |
| 21.751(5)    | 9.275(6)   | 17.079(9)  |            | 129.54(4)  |          | 2695 | 7.4  | 7.5    | ÷   | 217 |
| References p | . 132      |            | . *<br>. * |            |          |      |      |        |     | · · |
|              |            |            |            | -          |          |      |      |        |     |     |

## C<sub>25</sub>

| 112 |                 |                                     |   |        |     |
|-----|-----------------|-------------------------------------|---|--------|-----|
|     | C <sub>25</sub> |                                     |   |        |     |
| 56  | C25H22CoN5O2    | Co[CH(CN) <sub>2</sub> ](py)(salpa) | Ħ | P21/c  | 4   |
|     | c <sub>26</sub> |                                     |   |        |     |
| 113 | C26H34F6N1204   | [N1(02CCF3)(C11H12)]2               | M | P21/c  | . 4 |
| 217 | C25H57B5PaPt2   | closo-2, 3-[(Et 3P)2]2-1,2,3,6-     | M | P21 or | 2   |
|     |                 | CPt2CB5H7                           |   | PZ1/m  |     |

## c<sub>27</sub>

| Z43 | C <sub>27</sub> H <sub>17</sub> CoF <sub>3</sub> NtO <sub>4</sub> P | (C5H5)%1Co(CO), {P(C6H, F-2)3}                                       | M | 12/a               | 8 |
|-----|---------------------------------------------------------------------|----------------------------------------------------------------------|---|--------------------|---|
| 57  | C27H27Cl3CoN504                                                     | Co[CC1:C(C <sub>6</sub> H <sub>4</sub> C1-p) <sub>2</sub> ](py)(dmg) | 0 | Pn2 <sub>1</sub> a | 8 |
| 30  | C <sub>27H56</sub> Clir0P <sub>2</sub>                              | IrC1(CO) [Bu2 <sup>C</sup> P(CH2)13PBu2 <sup>C</sup> ]               | 0 | Pbca               | 8 |

с<sub>28</sub>

| 294 | C <sub>28</sub> H <sub>20</sub> Fe <sub>2</sub> O <sub>8</sub> Sn <sub>2</sub> | ${Fe[Sn(C_{5}H_{5})_{2}](C0)_{4}}_{2}$ | M   | C2/c               | 4 |
|-----|--------------------------------------------------------------------------------|----------------------------------------|-----|--------------------|---|
| 79  | С <sup>28н219н0</sup>                                                          | Au(OH)C4Ph4                            | Tri | PĪ                 | 2 |
| 246 | C <sub>28</sub> B <sub>21</sub> FeNiO <sub>3</sub> P                           | $(C_5H_5)$ N1Fe $(CO)_3(HC_2PPh_3)$    | м   | P21/c              | 4 |
| 122 | C <sub>28</sub> H <sub>23</sub> CrO <sub>3</sub> P                             | Cr(CO)3(PPh2)(abd)                     | 0   | Pn2 <sub>1</sub> a | 4 |
| 196 | C <sub>28</sub> H <sub>23</sub> Cr0 <sub>4</sub> P                             | Cr(CO)2(PPh3)(PhCO2the)                | м   | P21/n              | 4 |
| 244 | C <sub>28</sub> H <sub>26</sub> CoNiO4P                                        | (C5H4Me)N1Co(CO)4(PCyPh2)              | M   | P21/c              | 4 |
| 181 | C <sub>26</sub> H <sub>32</sub> ¥                                              | ¥(CH2C6H3He2)2(C5H5)2                  | м   | P21/c              | 4 |
| 168 | C72H40Cl604T12Zn2-C6H6                                                         | $[T1(dme)(C_5H_5)_2]_2Zn_2C1_6.C_6H_6$ | M   | P21/n              | 4 |

## C<sub>29</sub>

•

| 293 | C29H23IrMnO5P.5C6H6 |               | (C5H5)Ir(CPh0)(CHe0)(PPh2)M(CO)3   | н   | P21/c            | - 4 |
|-----|---------------------|---------------|------------------------------------|-----|------------------|-----|
|     |                     |               | ¥C <sup>6</sup> π <sup>6</sup>     |     |                  |     |
| 71  | C29H24MD03PS        |               | ۲<br>۲ (C6H, CH25Me) (CO) 3 (PPh3) | Tri | PĪ               | 2   |
|     |                     | а.<br>1915 г. |                                    |     | e<br>Le ser este |     |
|     |                     |               |                                    |     |                  |     |

|           |            |           |           |          | 113 |
|-----------|------------|-----------|-----------|----------|-----|
|           |            |           |           |          |     |
| 9.25(3)   | 18.14(6)   | 14.00(4)  | 105.3(1)  | 1369 6.1 | 218 |
|           |            |           |           |          |     |
| 16.431(3) | 9.954(2)   | 16.614(3) | 92.53(3)  | 1888 7.0 | 219 |
| 10.018(5) | 18.54(1)   | 12.648(5) | 126.54(5) | 2172 10  | 38  |
|           |            |           |           |          |     |
|           | · · ·      |           |           |          |     |
|           | 10 ((3/69) | 20 260/84 | 01 1/1)   | 2464 7 3 | 220 |

| 16.396(42) | 10.663(58) | 29.260(84) |   | 91.1(1) | <br>2464 | 7.1     | 220 |
|------------|------------|------------|---|---------|----------|---------|-----|
| 25.50(2)   | 23.13(2)   | 9.728(7)   | • |         | 3545     | 4.8 5.0 | 221 |
| 12.370(2)  | 34.154(4)  | 15.272(2)  |   |         | 2040     | 4.3     | 222 |
|            |            |            |   |         | •        |         |     |

| 19.8031(41) | 8.9385(11) | 16.7219(14) |         | 103.91(1) |           | 2767 | 4.9  |     | 223 |
|-------------|------------|-------------|---------|-----------|-----------|------|------|-----|-----|
| 11.90(2)    | 30.10(3)   | 6.19(4)     | 90.0(5) | 94.8(5)   | 90.8(5)   | 1565 | 11.8 |     | 224 |
| 10.674      | 12.294     | 20.351      |         | 110.13    |           | 1961 | 9.4  |     | 225 |
| 14.867(3)   | 14.475(5)  | 10.759(3)   |         |           |           | 1432 | 7.2  |     | 226 |
| 10.182(5)   | 18.884(6)  | 13.250(5)   |         |           | 108.64(2) | 2192 | 4.0  | 3.6 | 227 |
| 14.261(22)  | 10.034(17) | 18.508(32)  |         | 98.5(1)   |           | 3661 | 8.4  |     | 228 |
| 8.619(5)    | 22.278(12) | 11.921(7)   |         | 95.0(1)   |           | 3586 | 3.2  |     | 229 |
| 11.810(4)   | 10.201(5)  | 17.284(7)   |         | 93,20(2)  |           | 2692 | 8.4  | 5.6 | 170 |
|             |            |             |         |           |           |      |      |     |     |
|             |            |             |         |           |           |      |      |     |     |
|             |            |             |         |           |           |      |      |     |     |

| 21.089(4)    | 8.576(2)  | 16.530(2) |          | 102.50(1) |          | 2906 | 3.5 | 4.0 | 230 |
|--------------|-----------|-----------|----------|-----------|----------|------|-----|-----|-----|
| 11.022(7)    | 13.485(9) | 9.123(6)  | 94.52(1) | 109.90(1) | 98.14(1) | 3385 | 5.7 | 7.4 | 231 |
| References p | . 132     |           |          |           |          |      |     |     |     |

|      | с <sub>30</sub>                                                                                                                                                                 |                                                                                            |     |               |    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----|---------------|----|
| 283  | C <sub>30</sub> H <sub>24</sub> Cl <sub>3</sub> Ho0 <sub>4</sub> P <sub>2</sub> Sn <sup>+</sup> .H <sub>2</sub> Cl <sub>5</sub> 0Sn <sup>-</sup> .C <sub>6</sub> H <sub>6</sub> | [₩0 (SaCl 3) (CO), (dppe) ] [SaCl 5 (OH2) ]<br>C6H6                                        | M   | P21/c         | 4  |
| 276  | С <sub>30</sub> Н <sub>54</sub> %6Рt <sub>3-</sub> С7Н <sub>8</sub>                                                                                                             | Pt <sub>3</sub> (CNBu <sup>r</sup> ) <sub>6</sub> .Ph%e                                    | н   | 221/n         | -4 |
|      | C <sub>31</sub>                                                                                                                                                                 |                                                                                            |     |               |    |
| 25   | C <sub>31</sub> H <sub>22</sub> As <sub>2</sub> Cl <sub>2</sub> O <sub>6</sub> Re <sub>2</sub> -\$C <sub>6</sub> H <sub>14</sub>                                                | Re <sub>2</sub> Cl <sub>2</sub> (CO) <sub>6</sub> (dpam) .غC <sub>6</sub> H <sub>1</sub> , | Tri | PĪ            | 4  |
|      | С <sub>32</sub>                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                                                      |     |               |    |
| 167  | C32H27F605PRu                                                                                                                                                                   | Ru[C2H(CO2He)2](PPh3)[C5H4C(CF3)20H]                                                       | Tri | PĪ            | 2  |
| 152  | С <sub>32</sub> н <sub>23</sub> ном402р                                                                                                                                         | $H_0[C(CN)_2C(CN)_2H_2](CO)_2(PPh_3)(C_5H_5)$                                              | Tri | PI            | 2  |
| 11   | C <sub>32</sub> H <sub>26</sub> F <sub>12</sub> O <sub>3</sub> P <sub>2</sub> Pt                                                                                                | Pt{{OC(CF3)2]20}(PMePh2)2                                                                  | o   | Pca21         | 4  |
| 302a | C <sub>32</sub> H <sub>30</sub> Fe <sub>2</sub> O <sub>6</sub> P <sub>2</sub>                                                                                                   | Fe2(CO)6{C[P(OEt)3]CPh}(PPh2)                                                              | м   | <b>P2</b> 1/n | 4  |
| 97   | C <sub>32</sub> H <sub>32</sub> Cl <sub>4</sub> Ti <sub>4</sub>                                                                                                                 | [TiCl(C <sub>8</sub> H <sub>8</sub> )],                                                    | Tet | 142m          | 4  |
| 82   | C <sub>32</sub> H <sub>34</sub> CIP <sub>2</sub> Rh                                                                                                                             | $RhC1{P[(CH2)2CH:CH2]Ph2}2$                                                                | H   | PZ1/c         | 4  |
| 103  | C32E44A5402Bh <sup>+</sup> .CI04 <sup>-</sup>                                                                                                                                   | [Rh(0 <sub>2</sub> )(AsMe <sub>2</sub> Ph),]C10,                                           | Tri | PĪ            | 2  |
| 05   | C <sub>32</sub> H <sub>~</sub> ,Ir0 <sub>2</sub> P, <sup>+</sup> .C <sub>2</sub> ,H <sub>20</sub> B <sup>-</sup>                                                                | [Ir(0 <sub>2</sub> )(PMe <sub>2</sub> Ph),]BPh,                                            |     |               |    |
| .97  | Сзгньчюри                                                                                                                                                                       | Mo(PMe2Ph) 3(n-PhPMe2)                                                                     | Tri | РĪ            | 2  |
| 104  | C <sub>32</sub> H <sub>44</sub> O <sub>2</sub> P <sub>4</sub> Rh <sup>+</sup> .C <sub>24</sub> H <sub>20</sub> B <sup>-</sup>                                                   | [Bh(O <sub>2</sub> )(PHe <sub>2</sub> Ph), ]BPh,                                           |     |               |    |
|      | C <sub>33</sub>                                                                                                                                                                 |                                                                                            |     |               |    |
| 248  | C <sub>33</sub> H <sub>24</sub> Fe <sub>2</sub> N <sub>2</sub> O <sub>10</sub>                                                                                                  | Fe2(CO)6[C2Ph2(C13H14N2O4)] <sup>C</sup>                                                   | M   | PZ1/c         | 4  |
| 184  | C33H25CoN2                                                                                                                                                                      | Co[C2Ph2(CNPh)2](C5H5)                                                                     | M   | Cc            | 4  |

<sup>b</sup> CoC<sub>2</sub>Ph<sub>2</sub>(CNPh)<sub>2</sub> = 2,5-bis(phenylimino)-3,4-diphenylcobaltacyclopentane.

| 21.846(5)  | 12.346(3)   | 20.486(6)   |            | 122.23(2)  |           | 2149 | 9.3  | 9+1  |     | 232    |
|------------|-------------|-------------|------------|------------|-----------|------|------|------|-----|--------|
| 18.213(7)  | 11.811(7)   | 21.996(6)   |            | 110.21(3)  |           | 3680 | 6.1  |      |     | 233    |
| 15.763(1)  | 19-077(1)   | 12.233(1)   | 88.745(10) | 110.506(5) | 92.900(6) | 7061 | 4-5  | 5.4  |     | 234    |
|            |             |             |            |            |           |      |      |      |     |        |
| 10.131(1)  | 15.107(2)   | 10.798(1)   | 102.14(1)  | 107.04(1)  | 89.64(1)  | 4457 | 4.0  | 4.1  |     | 235    |
| 8.6057(9)  | 12.1581(15) | 13.9868(19) | 85.60(2)   | 75.95(1)   | 88.37(1)  | 4346 | 3.98 | 4.76 |     | 236    |
| 22.040(20) | 9.683(6)    | 16.235(3)   |            |            |           | 2611 | 8.5  | 10.8 |     | 237    |
| 10.368(11) | 17.173(16)  | 20.110(15)  |            | 95.24(6)   |           | 2421 | 7.7  |      |     | 238    |
| 10.763     |             | 13.657      |            |            |           | 1011 | 6.8  | 5.7  | 100 | 216    |
| 10.697(5)  | 9-832(5)    | 36.44(2)    |            | 96.42(3)   |           | 4218 | 5.1  |      |     | 239    |
| 13.24(2)   | 17.42(2)    | 10.30(2)    | 89.9(1)    | 87.9(1)    | 128.6(1)  | 4404 | 6.0  |      |     | 12,240 |
| ·. ·       |             |             |            |            |           | 3312 | 5    |      |     | 12     |
| 11.424(2)  | 16.210(3)   | 9.413(2)    | 82.84(1)   | 111.02(1)  | 85-67(1)  | 1203 | 6.8  | 10.2 |     | 241    |
|            |             |             |            |            |           | 3861 | 8    |      |     | 12     |

| 23.406(3) | 8.551(1) | 16.157(2) | 98.73(1) | 2108 5.3 6.3 | 242 |
|-----------|----------|-----------|----------|--------------|-----|
| 19.756    | 10.904   | 12.986    | 114.43   | 2741 5.8     | 243 |

115 .

References p. 132

с<sub>34</sub>

116

| 254 | C34H20Fe205                                                                    | Fe2(CO)6(C4Ph4) <sup>4</sup>                                                                                               | н | P21                | 2 |
|-----|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---|--------------------|---|
| 8   | C <sub>34</sub> H <sub>34</sub> HoN <sub>2</sub> O <sub>4</sub> P <sub>2</sub> | Mo(CO), [(CH2NMeCH2PPh2)2]                                                                                                 | м | P21/a              | 4 |
| 114 | C34835C182016Pd                                                                | PdC1 [HC8 (CO2He)8] (py)2                                                                                                  | м | P21                | 2 |
| 285 | C34H56Br4M84M02O2                                                              | [(C <sub>5</sub> H <sub>5</sub> ) <sub>2</sub> ‰(H)(MgOEt <sub>2</sub> )(MgPr <sup>1</sup> )Br <sub>2</sub> ] <sub>2</sub> | H | P21/c              | 2 |
| 187 | C <sub>36</sub> H <sub>6.8</sub> FeN <sub>6</sub> Ti <sub>2</sub>              | $Fe[C_5H_TI(NEt_2)_3]_2$                                                                                                   | м | P2 <sub>1</sub> /n | 4 |
|     |                                                                                |                                                                                                                            |   |                    |   |

<sup>a</sup>  $C_{4}$ Ph<sub>4</sub>Fe = tetraphenylferrole. <sup>b</sup> Decomposed, incomplete refinement.

C<sub>35</sub>

| 62  | C37832P2Pt                                               | cis-PtPh2(dppa)                                                                                          | M | PZ1/c              | 4 |
|-----|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---|--------------------|---|
|     | C <sub>37</sub>                                          |                                                                                                          |   |                    |   |
| 274 | Сз5 <sup>н</sup> б з <sup>N14N7.</sup> С6 <sup>н</sup> б | N14 (CNBu <sup>r</sup> ) 7. C <sub>6</sub> H <sub>6</sub>                                                | м | ₽21/c              | 4 |
| 37  | C35H63M0N72+.2F6P-                                       | [Ho(CNBu <sup>t</sup> ) <sub>7</sub> ](PF <sub>6</sub> ) <sub>2</sub>                                    | м | F2/m               | 8 |
| 41  | C35H25CoX5 <sup>2+</sup> .2C104.*C2H4C12                 | {Co(CNPh) <sub>5</sub> ](C10 <sub>4</sub> ) <sub>2</sub> -5C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub> | M | ₽2 <sub>1</sub> /c | 4 |
| 40  | C35H25CoN5+.CIO, .CHC13                                  | {Co(CNPb) 5 ] C10 CHCl 3                                                                                 | M | P2 <sub>1</sub> /m | 2 |

2

| 110 | C37466N102P2.3/LC7H8 | N1(CO <sub>2</sub> )(PCy <sub>3</sub> ) <sub>2</sub> . <sup>3</sup> /4PhMe | Tri | РĨ |
|-----|----------------------|----------------------------------------------------------------------------|-----|----|

C<sub>38</sub>

| 88 | C <sub>38</sub> B <sub>30</sub> As <sub>2</sub> P <sub>4</sub> Pt                         | Pt(C <sub>2</sub> F <sub>4</sub> )(AsPh <sub>3</sub> ) <sub>2</sub> | м | P2 <sub>1</sub> /n | 4 |
|----|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---|--------------------|---|
| 36 | C <sub>38</sub> H <sub>30</sub> Cl <sub>2</sub> OP <sub>2</sub> HuSe                      | BuCl <sub>2</sub> (CO) (CSe) (PPh <sub>3</sub> ) <sub>2</sub>       | н | P21/n              | 4 |
| 15 | C <sub>38H30</sub> NO <sub>3</sub> Os <sup>+</sup> .Cl0, .CH <sub>2</sub> Cl <sub>2</sub> | [0=(CO)2(FPb3)2(NO)]C104.CH2C12                                     | м | P21/n              | 4 |
| 83 | C 38H 31 IN405PRh                                                                         | RhI[trons-CH(CN):CH(CN)][P(OPh)3]<br>(CHC6NaOtte-p)2                | M | ₽21/c              | 4 |
| 84 | CIRHILCLITP2                                                                              | trous-IrCl(Calle)(PPha)-                                            | ¥ | P7. /c             |   |

|           |            |                |           | 117                 |     |
|-----------|------------|----------------|-----------|---------------------|-----|
|           |            |                |           |                     |     |
| 16.464(2) | 7.822(2)   | 11-374(2)      | 98.14(1)  | 2465 6.1 5.1 233    | 244 |
| 16.955(5) | 19.579(8)  | 10.057(4)      | 96.41(3)  | 6                   | 245 |
| 11.588(5) | 15.54(1)   | 10.362(5)      | 105.1(1)  | 3476 5.4            | 246 |
| 8.566(8)  | 12.955(12) | 18.617(15)     | 93.9(1)   | 723 14 <sup>b</sup> | 247 |
| 9.408(5)  | 25.111(12) | 18.448(18)     | 105.83(8) | 2256 11.9           | 248 |
|           |            |                |           |                     |     |
|           |            |                |           |                     |     |
|           |            |                |           |                     |     |
| 10.849(8) | 17.741(14) | -<br>11.396(9) | 121.00(3) | 647 10.3 8.7        | 249 |

| 10.849(8)  | 17.741(14) | 11.396(9)  | 121.00(3)  | 647  | 10.3 | 8.7 | 249 |
|------------|------------|------------|------------|------|------|-----|-----|
| 10.336(2)  | 13.939(6)  | 27.143(7)  | 95.589(11) | 2358 | 7.1  | 9.3 | 250 |
| 25.220(10) | 11.665(5)  | 38.013(17) | 90_42(3)   | 3014 | 6.0  | 7.3 | 251 |
| 11.236(5)  | 11.036(4)  | 36.637(7)  | 101.39(3)  | 1656 | 10.7 |     | 252 |

| 15.390   | 10.138   | 22.380  |         | 119.4    |         | 4299 6.8 7.6 | 253 |
|----------|----------|---------|---------|----------|---------|--------------|-----|
| 19.03(2) | 12.18(1) | 9.64(1) | 96.3(1) | 100.2(1) | 99.1(1) | 2448 11      | 254 |
|          |          |         |         |          |         |              |     |
|          |          |         |         |          |         |              |     |

| 11.291(10)    | 21.018(15) | 14.380(10) | 95.54(5)  | 5110 5.3 | 6.2   | 255 |
|---------------|------------|------------|-----------|----------|-------|-----|
| 10.470(1)     | 23.446(2)  | 14.507(2)  | 94.75(1)  | 2214 7.7 |       | 256 |
| 17.031(2)     | 13.951(1)  | 17.270(1)  | 104.33(1) | 4281 5.7 | 7.5   | 257 |
| 15.252(7)     | 11.454(6)  | 21.933(1)  | 103.62(2) | 4357 4.0 | 4.8   | 258 |
| 12.334(2)     | 22.957(4)  | 14.039(2)  | 125.54(1) | 4006     | 3.9   | 259 |
|               |            |            |           |          |       |     |
|               |            |            |           |          | * • • |     |
| Deferment     | 196        |            |           |          | •     |     |
| heactences p. | 104        |            |           |          |       |     |

#### Cza

| 61                 | C39H30Cl2FL0P2Pt                                                                                                                 | cis-PtCl(CF2COCF2Cl)(PPh3)2                                         | H                     | P21/a         | 4   |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------|---------------|-----|
| 160                | C39H30M2306P3                                                                                                                    | [Hn(CO)2(C5H5)]3(PPh)3                                              |                       |               |     |
|                    | c <sub>40</sub>                                                                                                                  |                                                                     |                       |               |     |
| 89                 | C <sub>40</sub> H <sub>30</sub> F <sub>8</sub> P <sub>2</sub> Pt                                                                 | Pt (CF3CF:CFCF3) (PPh3)2                                            | M                     | P21/c         | 4   |
| 92                 | C.083692Pc                                                                                                                       | Pt (C3H3He) (PPh3)2                                                 | н                     | <b>P2</b> 1/c | 4   |
| -                  |                                                                                                                                  |                                                                     | . 0                   | P212121       | . 4 |
| 17                 | C <sub>40</sub> H <sub>44</sub> N <sub>4</sub> O <sub>4</sub> Bh <sub>2</sub>                                                    | [Rh(CO) <sub>2</sub> ] <sub>2</sub> (oep)                           | м                     | P21/c         | 2.  |
| 286                | C <sub>40</sub> H <sub>62</sub> Br <sub>4</sub> Hg <sub>4</sub> Ho <sub>2</sub> O <sub>2</sub> .C <sub>4</sub> H <sub>10</sub> O | {(C5H5)2Ho(H)(MgOEt2)(MgCy)Br2]                                     | 2.Et <sub>2</sub> 0 M | C2/m          | 2   |
| <sup>⊄</sup> Dis   | order, space group problems.                                                                                                     |                                                                     |                       |               |     |
|                    | C <sub>41</sub>                                                                                                                  |                                                                     |                       |               |     |
| 90                 | C <sub>41</sub> H <sub>38</sub> P <sub>2</sub> Pt                                                                                | Pt (C3H2He2) (PPh3)2                                                | Tri                   | PĪ            | z   |
| 93                 | C <sub>41</sub> H <sub>38</sub> P <sub>2</sub> Pt                                                                                | Pt (C3H2He2) (PPh3)2                                                | м                     | P21/c         | 4   |
| ີ C <sub>3</sub> ສ | Me <sub>2</sub> = 1,1-dimethylallene. <sup>b</sup> C <sub>3</sub> H <sub>2</sub>                                                 | Me <sub>2</sub> = 1,2-dimethylcyclopropene.                         |                       |               |     |
|                    | c <sub>42</sub>                                                                                                                  |                                                                     |                       |               | -   |
| 112                | C42H30F1203P2PC                                                                                                                  | Pt{[0C(CF3)2]20}(PPh3)2                                             | Tri                   | PĪ            | z   |
| 95                 | C <sub>42</sub> H <sub>38</sub> P <sub>2</sub> Pt                                                                                | Pr(C <sub>6</sub> H <sub>8</sub> )(PPb <sub>3</sub> )2 <sup>a</sup> | Tri                   | PĨ            | 2   |
| 91                 | C <sub>42</sub> H <sub>32</sub> P <sub>2</sub> Pt                                                                                | Рс (С <sub>6</sub> H <sub>8</sub> ) (РРЬ3) 2                        | o                     | P212121       | 4   |
| 50                 | C42H420T12                                                                                                                       | [11(CH2Ph)3]20                                                      | Rhorab                | เวิ           | 1   |

<sup>a</sup> C<sub>6</sub>H<sub>8</sub> = cyclohexyne. <sup>b</sup> C<sub>6</sub>H<sub>8</sub> =  $\Delta^{1,+}$ -bicyclo[2.2.0]hexene.

C42H60010P4Tc+.C104-

# C<sub>43</sub>

11

| 58 | C <sub>43</sub> H <sub>30</sub> F <sub>5</sub> IrOP <sub>2</sub> | $trous - Ir(C_6F_5)(C0)(PPh_3)_2$ | н | P21/c 4 |  |
|----|------------------------------------------------------------------|-----------------------------------|---|---------|--|
|    |                                                                  |                                   |   |         |  |

cis-{Tc(C0)2[PPh(OEt)2]4}C104

PĨ

2

Tri

| 10.994(3)  | 13.459(2) | 26.187(6) | 108.49(3) | 2145 3.94 3.94 |
|------------|-----------|-----------|-----------|----------------|
| References | n 132     |           |           |                |
|            | r. 102    |           |           |                |

| 14-559(9)  | 12.287(6)  | 12.819(3)  | 107.62(3) | 84.57(4) | 105.74(4) | 5296 | 6.8  | 8.6 | 237 |
|------------|------------|------------|-----------|----------|-----------|------|------|-----|-----|
| 9.875(2)   | 18.141(4)  | 10.081(2)  | 89.99(2)  | 80.68(2) | 78.28(2)  | 5157 | 4.4  | 4.0 | 266 |
| 17.726(3)  | 9.748(2)   | 19.724(3)  |           |          | • .       | 3510 | 4.0  | 4.3 | 267 |
| 9.58(2)    |            |            | 83.6(2)   |          |           | 2234 | 11.2 |     | 268 |
| 17.708(15) | 13.977(12) | 10.185(10) | 93.22(8)  | 90.48(9) | 96.13(11) | 3570 | 8.6  |     | 269 |

| 18.557(2) <sup>.</sup> | 10.216(2) | 9.647(2) | 98.29(3) | 73.44(2)  | 88.34(2) | 6033 | 4.5 | 4.3 | 265 |
|------------------------|-----------|----------|----------|-----------|----------|------|-----|-----|-----|
| 12.49(1)               | 17.77(1)  | 16.38(1) |          | 109.42(5) |          | 2390 | 3.2 |     | 263 |

| • .       |           |           |           |      |                  |     |
|-----------|-----------|-----------|-----------|------|------------------|-----|
|           |           |           |           |      |                  |     |
| 11.635(2) | 19.213(4) | 18.107(3) | 114.39(2) | 3841 | 5.4              | 262 |
| 11.28(3)  | 20.74(4)  | 17.23(4)  | 124.5(2)  | 905  | 5.1              | 263 |
| 9.57(3)   | 19.66(4)  | 18.10(4)  |           |      |                  | 263 |
| 8.778(2)  | 12.145(2) | 19.134(3) | 108.94(2) | 2343 | 6.0              | 264 |
| 15.671(8) | 11.996(5) | 15.085(8) | 109.55(8) | 1531 | 8.3 <sup>a</sup> | 247 |

| 20.45(2) | 18.66(2) | 10.43(1) | 114.0(4) | 3956 9.5 | 260 |
|----------|----------|----------|----------|----------|-----|
|          |          |          |          |          |     |
|          |          |          |          | 2300 7.4 | 261 |
|          |          |          |          |          |     |

| 16 | C <sub>43</sub> B <sub>36</sub> S <sub>2</sub> 00sP <sub>2</sub> .CB <sub>2</sub> Cl <sub>2</sub>  | OsH(CO)(N2Ph)(PPh3)2.CH2C12    | Tri | PĪ                 | Z   |
|----|----------------------------------------------------------------------------------------------------|--------------------------------|-----|--------------------|-----|
| 20 | C <sub>63</sub> H <sub>66</sub> As <sub>6</sub> I2H003                                             | meso-HoI2(CO)3[C6H4(AsHePh)2]2 | Tri | PÌ                 | 2   |
| 21 | C <sub>43</sub> H <sub>40</sub> As <sub>4</sub> I <sub>2</sub> MoO <sub>2</sub> .CHCI <sub>3</sub> | rac-HoI2(CO)3[C6H4 (AsMePh)2]2 | Tri | РĪ                 | 2 - |
| 96 | C <sub>43</sub> H <sub>40</sub> P <sub>2</sub> Pr                                                  | Pt(C7H10)(PPh3)2ª              | н   | P2 <sub>1</sub> /c | .4  |
| 29 | C <sub>43</sub> H <sub>42</sub> ClirOP <sub>2</sub>                                                | trons-1rC1(CO)[P(o-tol)3]2     | м   | P21/p              | 2   |
| 63 | C4 3H4 303PPd                                                                                      | Pd(acac)(PMe2Ph)[C,Ph,(OEc)]   |     |                    |     |

<sup>G</sup> C<sub>7</sub>H<sub>10</sub> = cycloheptyne.

C<sub>44</sub>

| 271 | C44H30C0208P2Pt2                                                           | Co2Pt2(CO)8(PPh3)2                   | Tri | Pl                 | 1  |
|-----|----------------------------------------------------------------------------|--------------------------------------|-----|--------------------|----|
| 14  | C44835FeN202P2+_BP4                                                        | ${Fe(CO)_2(N_2Ph)(PPh_3)_2}BF_4$     | M   | ₽2 <sub>1</sub> /c | 4  |
| 26  | C44H36C1N2P2Ru <sup>+</sup> .C104 <sup>-</sup> .CH2C12                     | [RuC1(CO)2(HN2Ph)(PPh3)2]Clo4.CH2Cl2 | м   | P21/c              | 4  |
| 269 | C44H3905P3Pt2Ru                                                            | RuPt_(CO) 5 (PMePh2) 3               | Tri | РĨ                 | 2  |
| 42  | C44H52C0I2N4                                                               | Co(CNC6H3Et2)4I2                     | м   |                    |    |
| 101 | Ϲ <sub>ຩʹϞ</sub> ℍϛϛϹͻ <sub>Ϩ</sub> Ϋ <sub>Ϟ</sub> ϘϩϷϛͺϟϹ <sub>ϐ</sub> ℍϐ | Co2(O2)(CN)4(PH2Ph)5-\$C6H6          |     | Fdd2               | 16 |
|     | С <sub>45</sub>                                                            |                                      |     |                    |    |
| 97  | C <sub>⊾5</sub> H <sub>38</sub> ₽₂₽t                                       | Pt(MeC2Ph)(PPh3)2                    | м   | P21                | 2  |

с<sub>46</sub>

C45842P2Pd2

263

| 302 | C46H10F20Fe206P2 | Fe <sub>2</sub> (CO) <sub>6</sub> [P(C <sub>6</sub> F <sub>5</sub> ) <sub>2</sub> ][(C <sub>6</sub> F <sub>5</sub> ) <sub>2</sub> PC <sub>4</sub> Ph <sub>2</sub> ] | M | P21/c | 4 |
|-----|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------|---|
|     |                  |                                                                                                                                                                     |   |       |   |

Pd2(PPh3)2(C4H7)(C5H5)

PĪ

Tri

1

C<sub>47</sub>

53  $C_{4.7}H_{4.0}HO_{3}P_{2}Ru$   $Ru(OAc)[CH:N(tol-p)](CO)(PPh_{3})_{2}$  M  $P2_{1}/c$  4

| 13.440(2) | 13.491(1) | 12.528(2) | 114.30(1)  | 101.82(1) | 81.43(1)  | 5340 | 4.6 | 5.7 |    | 271 |
|-----------|-----------|-----------|------------|-----------|-----------|------|-----|-----|----|-----|
| 15.828(6) | 10.505(1) | 9.733(1)  | 120.604(8) | 98.99(2)  | 97.69(2)  | 2371 | 11  | 13  |    | 272 |
| 14.985(5) | 12.337(3) | 9.654(1)  | 110.78(2)  | 101.90(2) | 104.74(2) | 2809 | 8.0 | 9.3 |    | 272 |
| 8.951(2)  | 33.523(8) | 13.095(3) |            | 114.24(2) |           | 4918 | 3.0 | 2.4 |    | 266 |
| 15.689(6) | 10.981(3) | 10.739(4) | -          | 92.93(3)  |           | 1230 | 4.7 | 5.5 |    | 273 |
|           |           |           |            |           |           |      | 8.3 |     | SD | 274 |

| 10.954(4) | 11.090(4) | 9.352(4)   | 98.40(2) | 11.06(3)  | 82.17(2) | 4421 4.6  |     | 275 |
|-----------|-----------|------------|----------|-----------|----------|-----------|-----|-----|
| 13.447(4) | 14.260(4) | 22.755(16) |          | 113.29(2) |          | 3159 6.4  | 8.8 | 276 |
| 11.801(5) | 17.752(8) | 22.938(11) |          | 110.96(2) |          | 5074 5.3  | 6.7 | 277 |
| 10.694(3) | 22.424(7) | 8.938(2)   | 83.41(2) | 90.02(2)  | 97.42(2) | 5002 10.0 | -   | 278 |
| 19.780(8) | 10.885(6) | 23.668(9)  |          | 118.8     |          | 1719 10.6 |     | 279 |
| 33.583(4) | 30.471(4) | 19.449(2)  |          |           |          | 2212 5.B  | 4.6 | 280 |

| 14.840(4) | 9.558(3) | 13.553(4) |          | 102.74(2) |          | 2843 4.2 | 5.5 | 281 |
|-----------|----------|-----------|----------|-----------|----------|----------|-----|-----|
| 9.663(4)  | 9.725(4) | 10.863(3) | 84.15(2) | 81.01(2)  | 72.32(3) | 2206 8.9 |     | 282 |
|           |          |           |          |           |          |          |     |     |
|           |          |           |          |           |          |          |     |     |

| 16.183(11) | 11.524(18) | 24.546(25) | 98.76(14) | 4296 8.7 | 283 |
|------------|------------|------------|-----------|----------|-----|
|            |            |            |           |          |     |

| 9.947(4)     | 14.680(4) | 28.014(5) | 92.08(2) | 2519 5.7 5.6 | 284 |
|--------------|-----------|-----------|----------|--------------|-----|
|              |           |           |          |              |     |
|              |           |           |          |              |     |
|              |           |           |          | •            |     |
|              |           | · · · · · |          |              |     |
| References p | . 132     |           |          |              |     |

С<sub>50</sub>

| 13  | C <sub>50</sub> B <sub>28</sub> N <sub>4</sub> O <sub>6</sub> Re <sub>2</sub>      | {Re(CO) <sub>3</sub> ] <sub>2</sub> (tpp)                | M | P21/c              | 2 |
|-----|------------------------------------------------------------------------------------|----------------------------------------------------------|---|--------------------|---|
| 12  | C <sub>50</sub> H <sub>28</sub> N <sub>4</sub> O <sub>6</sub> Tc <sub>2</sub>      | [Tc(CO) <sub>3</sub> ] <sub>2</sub> (tpp)                | м | ₽2 <sub>1</sub> /c | 2 |
| 65  | C50840FN2P2Pt+.8F4                                                                 | [Pc (C2Ph) (HN2C6H.F-p) (PPh3)2]BF4                      | 0 | P212121            | 4 |
| 106 | C50H44Ir02P4 <sup>+</sup> -C104 <sup>-</sup>                                       | [lr(0 <sub>2</sub> )(dppm) <sub>2</sub> ]CI0,            |   |                    |   |
| 106 | C <sub>5C</sub> H <sub>44</sub> IrO <sub>2</sub> P4 <sup>+</sup> .F6P <sup>-</sup> | [Ir(0 <sub>2</sub> )(dppm) <sub>2</sub> ]PF <sub>6</sub> |   |                    |   |
|     |                                                                                    |                                                          |   |                    |   |

с<sub>51</sub>

| - | C51855Fe203 | Fe2(CO)3(C,Bu2Ph2)2 | Tet | 14 | 4 |
|---|-------------|---------------------|-----|----|---|
|   |             |                     |     |    |   |

<sup>a</sup> Corrects entry 323 C<sub>27</sub>H<sub>28</sub>Fe<sub>2</sub>O<sub>3</sub> in 1974 survey.

c<sub>52</sub>

| 204 | C <sub>52</sub> H44F2408Eh4                  | $[Rh(hfac)(C_8H_{10})]_4^{\alpha}$                         | м | P21/c              | 8 |
|-----|----------------------------------------------|------------------------------------------------------------|---|--------------------|---|
| 107 | C52H48Ir02P4 .F6P                            | [Ir(0 <sub>2</sub> )(dppe) <sub>2</sub> ]PF <sub>6</sub>   | м | P2 <sub>1</sub> /n | 4 |
| 108 | C52H48Ir02P452 <sup>+</sup> .C1 <sup>-</sup> | {Ir(S <sub>2</sub> O <sub>2</sub> )(dppe) <sub>2</sub> ]Cl |   |                    |   |

<sup>a</sup> C<sub>6</sub>H<sub>10</sub> = allylcyclopentene. <sup>b</sup> Redetermination.

C<sub>54</sub>

| 235 | C5+H+2M2O5P+-CH2Cl2-C6H1+ | Mn2(CO)5(dppm)2.CH2Cl2.C5E14          | н   | Cc    | 4 |
|-----|---------------------------|---------------------------------------|-----|-------|---|
| 68  | C54Ha7MDO2Pa              | ዜርር0) [COC6ዚ, የየከ(CH2) շ የየከ2] (dppe) | Tri | РĪ    | z |
| 28  | C54H112Cl2O2P4Rh2         | {BhC1(C0) [Bu2P(CH2) 10PBu2]}2        | м.  | P21/c | 2 |
|     |                           |                                       |     |       |   |

## C55

|                  | •                                      |   |       |   |
|------------------|----------------------------------------|---|-------|---|
| <br>C55H60FeN100 | $Fe(CO)(Meim)(C_{SO}H_{S}, N_{0})^{C}$ | M | ₽21/c | 2 |
|                  |                                        |   |       |   |

<sup>a</sup> C<sub>50</sub>H<sub>56</sub>N<sub>8</sub> = substituted octaaza[14]annulene.

| 11.887(2) | 16.363(2) | 11.586(2) | 117.02(1) | 2385 | 4.5 | 4.4 | 285 |
|-----------|-----------|-----------|-----------|------|-----|-----|-----|
| 11.934(1) | 16.295(1) | 11.596(1) | 117.02(1) | 3762 | 3.2 | 2.7 | 285 |
| 25.638(3) | 16.250(2) | 13.050(2) |           | 2852 | 9   |     | 286 |
|           |           |           |           | 3495 | 5   |     | 12  |
|           |           |           |           | 3371 | 6   |     | 12  |
|           |           |           |           |      |     |     |     |

| 15.093(5) | 18.641(4) |  |  |  | 6.1 | <u>a</u> ` |
|-----------|-----------|--|--|--|-----|------------|
|           |           |  |  |  |     |            |

| 19.641   | 14.353   | 44.875   | 98.03 | 3288 | 7.7 |    | 287    |
|----------|----------|----------|-------|------|-----|----|--------|
| 17.18(1) | 16.46(1) | 16.97(1) | 95.02 | 4007 | 4.4 | ъ  | 12,285 |
|          |          |          |       |      |     | SD | 298    |

| 19.650(3) | 16.908(2) | 22.253(4)   |         | 130.89(1) |          | 1893 | 10.5 12.5 | 290,291 |
|-----------|-----------|-------------|---------|-----------|----------|------|-----------|---------|
| 10.60(1)  | 13.37(1)  | 19.62(1)    | 99.1(1) | 98.1(1)   | 112.3(1) | 3800 | 9         | 292     |
| 8.474(1)  | 32.65(4)  | 12.307(2) - |         | 112.35(2) |          | 2071 | 7.9       | 222     |

| 12.0 | 8.40 | 22.8 | 100 | CD | 293 |
|------|------|------|-----|----|-----|

.

c<sub>56</sub> - c<sub>94</sub>

•

| 43  | C56 <sup>₽</sup> 40 <sup>Co</sup> 2 <sup>I</sup> 3 <sup>8</sup> 8 <sup>+</sup> .I <sup>−</sup> | {Co <sub>2</sub> I <sub>3</sub> (CNPh) <sub>8</sub> ]I                                                | Tri |       | 2 |
|-----|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----|-------|---|
| 38  | С56 <sup>H</sup> 54 <sup>MoN</sup> 2 <sup>P</sup> 4                                            | trans-Mo(CNMe)2(dppe)2                                                                                | Tri | PĨ    | 1 |
| 150 | C58H45Ge2bb0                                                                                   | Nb (CO) (PhC <sub>2</sub> CePh <sub>3</sub> ) <sub>2</sub> (C <sub>5</sub> H <sub>5</sub> )           | Tri | PĪ    | 2 |
| 215 | C72E70B10Cu4P4.CHC13                                                                           | [Cu(PPh <sub>3</sub> ) <sub>2</sub> ] <sub>2</sub> B <sub>10</sub> H <sub>10</sub> -CHC1 <sub>3</sub> | Tri | PĪ    | 2 |
| 66  | C73H60C1P4Pt2S2 <sup>+</sup> .BF4-0-2CH2C12                                                    | [C1(Ph3P)2Pt(CS2)Pt(PPh3)2]BF4-<br>0.2CH2Cl2                                                          | н   | P21/c | 4 |
| 310 | C78H65P5Pt3-C6H6                                                                               | Pt 3Ph(PPh 3) 2 (PPh 2) 3. C6H6                                                                       | o   | Pbcn  | 4 |
| 213 | ϹℊͺͱℍϧϛϜϩϛϐϐϩℙϡΪϺ                                                                              | $RhAg_2(C_2C_6F_5)_5(PPh_3)_3$                                                                        | M   | P21/n | 4 |

| 11.058(3)   | 11.878(3)   | 12.462(3)   | 93.19(2)  | 107.69(2) | 104.64(2) | 4998 | 8.9  |      | 279 |
|-------------|-------------|-------------|-----------|-----------|-----------|------|------|------|-----|
| 10.747      | 10.555      | 12.565      | 72.37     | 87.78     | 61.80     | 3579 | 6    |      | 294 |
| 24.262(5)   | 8.965(5)    | 11.106(5)   | 96.4(2)   | 85.1(2)   | 95.9(2)   | 2312 | 7.3  |      | 295 |
| 21.189(3)   | 13.438(2)   | 13.207(2)   | 102.61(1) | 92.92(1)  | 88.4(1)   | 3405 | 6.1  | 7.3  | 309 |
| 15.577(1)   | 16.539(3)   | 27.190(2)   |           | 95.061(7) |           | 5351 | 7    |      | 296 |
|             |             |             |           |           |           |      |      |      |     |
| 22.411(8)   | 17.940(7)   | 18.359(8)   |           |           |           | 2808 | 7.9  |      | 297 |
| 15.9023(19) | 21.4974(27) | 25.0411(33) |           | 102.00(1) |           | 7820 | 6.20 | 6.21 | 298 |

#### References p. 132

TABLE 4. HYDRIDES, BOROHYDRIDES, NITROSYLS, DINITROGEN, ARYLDIAZO, ARYLDIIMINE AND TERTIAR HYDRIDE AND BOROHYDRIDE COMPLEXES

| No. | FORMULA                                                                                                                                        | STRUCTURE                                                                                                                                    | CRYSTAL<br>TYPE | SPACE         | z  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|----|
| 319 | C36H68P2Pt                                                                                                                                     | trans-PcH2(PCy3)2 I                                                                                                                          | Tri             | PĨ            | z  |
|     |                                                                                                                                                | 11                                                                                                                                           | Ħ               | 92/c          | 4  |
| 320 | C 36H71BC0P2                                                                                                                                   | Сон(вн.,) (PCy <sub>3</sub> ) <sub>2</sub>                                                                                                   | н               | P21/a         | 4  |
| 313 | С <sub>42</sub> н <sub>43</sub> сохр <sub>3</sub>                                                                                              | Colf [N(CH2CH2PPh2)3]                                                                                                                        | મ               | C2/c          | 8  |
| 314 | Сь 2нь 3согь - 4С 3н50                                                                                                                         | CoH{P(CH2CH2PPh2)3}.5He2CO                                                                                                                   | Trig            | R3            | 6. |
| 315 | C42H43CoP4 <sup>+</sup> .BF4 <sup>-</sup>                                                                                                      | {CoH[P(CH2CH2PPh2)3]}BF.                                                                                                                     | M               | Cc            | 4  |
| 316 | С <sub>5 4</sub> Н <sub>4 3</sub> СоРц                                                                                                         | Сон[р(С6н.ррр2)3]                                                                                                                            | 0               | РЪса          | 8  |
| 317 | C54H49IrP3. C6H6                                                                                                                               | IrH3(PPh3)3-3C6H6                                                                                                                            | Tri             | PĪ            | 2  |
| 312 | C <sub>82</sub> H <sub>81</sub> As <sub>6</sub> Cc <sub>2</sub> <sup>+</sup> .C <sub>24</sub> E <sub>20</sub> B <sup>-</sup>                   | ${Co_2H_3[MeC(CH_2AsPh_2)_3]_2}BPh_4$                                                                                                        | м               | <b>P2</b> 1/c | 4  |
| 311 | C <sub>92</sub> H <sub>81</sub> Fe <sub>2</sub> P <sub>5</sub> <sup>+</sup> .F <sub>6</sub> P <sup>-</sup> .1\$CH <sub>2</sub> Cl <sub>2</sub> | {Fe2H3[MeC(CH2PPh2)3]2}PF6.13CH2C12                                                                                                          | н               | <b>P2/c</b>   | 4  |
| 318 | C84H72ClIr2P452.Cl043C3H60                                                                                                                     | [(Ph <sub>3</sub> P) <sub>2</sub> (H)Ir(SPh) <sub>2</sub> CIIr(H)(PPh <sub>3</sub> ) <sub>2</sub> ]-<br>ClO <sub>4</sub> .3% <sub>2</sub> CO | M               | P21           | Z  |

#### NITROSYLS

| No . | FORMULA                                                                                                                      | STRUCTURE                                              | CRYSTAL<br>TYPE | SPACE              | z   |
|------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------|--------------------|-----|
| 321  | C <sub>2</sub> H <sub>3</sub> Br <sub>6</sub> N <sub>2</sub> ORe <sup>-</sup> -C <sub>B</sub> H <sub>20</sub> N <sup>+</sup> | NEt, [Re(NO)Br, (MeCN)]                                | . 0             | Pn2 <sub>l</sub> a | 4   |
| 322  | C <sub>2</sub> H <sub>6</sub> Br <sub>4</sub> NO <sub>2</sub> Be <sup>-</sup> .C <sub>8</sub> H <sub>20</sub> N <sup>+</sup> | NEt <sub>4</sub> [Be(NO)Br <sub>4</sub> (EtOH) ]       | o               | Pbca               | . 8 |
| 336  | C15H27NN1010P3 <sup>+</sup> .BF4 <sup>-</sup>                                                                                | {N1(N0) [P(OCH2) 3Che] 3}BF4                           | н               | C2/c               | 8   |
| 323  | C <sub>16</sub> H <sub>15</sub> C1FeN <sub>2</sub> O <sub>2</sub> P                                                          | $Fe(NO)_2Cl(PPh_3)$                                    | M               | C2/c               | 8   |
| 329  | C20H32As4C0N02+.2C104                                                                                                        | [(o(NO)(diars)2](Cl04)2                                | 0               | P212151            | 4   |
| 330  | C21H32A54C0N205+.CNS                                                                                                         | [Co(NO)(NCS)(diars)2]NCS                               | , H             | C2/m               | 4   |
| 331  | C <sub>36</sub> H <sub>30</sub> Cl <sub>2</sub> NOP <sub>2</sub> Rh                                                          | Rh(NO)Cl <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> | H               | 12/c               | 4   |
| 335  | C <sub>36</sub> H <sub>30</sub> Cl <sub>2</sub> Ir <sub>2</sub> H <sub>2</sub> O <sub>3</sub> P <sub>2</sub>                 | [Ir(NO)C1(PPh <sub>3</sub> )] <sub>2</sub> 0           | Tri             | PĪ                 | z   |

. -

| ь         | C                                                                                                                            | а                                                                                                                                                                                                                                                                                                                                                                                                                           | e                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ŷ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.906(3)  | 10.490(3)                                                                                                                    | 100.60(2)                                                                                                                                                                                                                                                                                                                                                                                                                   | 112.91(2)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89.73(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15.767(3) | 10.218(3)                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                             | 106.93(2)                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12.614(4) | 13.195(6)                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                             | 106.93(3)                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11.192(3) | 28.027(5)                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                             | i08.0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | 36.404                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 302,303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12.820    | 18.631                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                             | 90.33                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22.312    | 22.581                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9.5385(9) | 12.4486(6)                                                                                                                   | 105.43(1)                                                                                                                                                                                                                                                                                                                                                                                                                   | 82.70(1)                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.28(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 18.286(4) | 38.036(8)                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                             | 95.40(2)                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 17.839(2) | 20.106(2)                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                             | 95.57(1)                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12.918(1) | 22.044(4)                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.94(1)                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | ь<br>9.906(3)<br>15.767(3)<br>12.614(4)<br>11.192(3)<br>12.820<br>22.312<br>9.5385(9)<br>18.286(4)<br>17.839(2)<br>12.918(1) | b         c           9.906(3)         10.490(3)           15.767(3)         10.218(3)           12.614(4)         13.195(6)           11.192(3)         28.027(5)           36.404         36.404           12.820         18.631           22.312         22.581           9.5385(9)         12.4486(6)           18.286(4)         38.036(8)           17.839(2)         20.106(2)           12.918(1)         22.044(4) | <ul> <li>с</li> <li>10.490(3)</li> <li>100.60(2)</li> <li>10.218(3)</li> <li>100.60(2)</li> <li>10.218(3)</li> <li>10.218(3)</li> <li>10.218(3)</li> <li>12.614(4)</li> <li>13.195(6)</li> <li>28.027(5)</li> <li>36.404</li> <li>12.820</li> <li>18.631</li> <li>22.312</li> <li>22.581</li> <li>22.581</li> <li>22.581</li> <li>105.43(1)</li> <li>105.43(1)</li> <li>16.286(4)</li> <li>38.036(8)</li> <li>17.839(2)</li> <li>22.044(4)</li> </ul> | b         c         a         g           9.906(3)         10.490(3)         100.60(2)         112.91(2)           15.767(3)         10.218(3)         100.60(2)         112.91(2)           12.614(4)         13.195(6)         106.93(2)         106.93(2)           12.614(4)         13.195(6)         105.404         106.93(2)           11.192(3)         28.027(5)         108.0(1)         108.0(1)           36.404         36.404         90.33         105.312           22.312         22.581         90.33         105.43(1)         82.70(1)           18.286(4)         38.036(8)         105.43(1)         82.70(1)           18.286(4)         38.036(8)         95.40(2)         95.57(1)           17.839(2)         20.106(2)         91.94(1)         91.94(1) | b         c         a         g         y           9.906(3)         10.490(3)         100.60(2)         112.91(2)         89.73(2)           15.767(3)         10.218(3)         100.60(2)         112.91(2)         89.73(2)           12.614(4)         13.195(6)         106.93(2)         106.93(2)         106.93(2)           12.614(4)         13.195(6)         106.93(2)         106.93(2)         106.93(2)           11.192(3)         28.027(5)         106.93(2)         106.93(2)         100.218(1)           12.820         18.631         108.0(1)         109.33         100.218(1)           12.820         18.631         90.33         100.218(1)         100.218(1)           22.312         22.581         100.218(1)         100.218(1)         100.218(1)           18.286(4)         105.43(1)         82.70(1)         100.218(1)           18.286(4)         38.036(8)         95.40(2)         100.218(1)           17.839(2)         20.106(2)         95.57(1)         100.218(1) | b         c         a         f         y         DATA           9.906(3)         10.490(3)         100.60(2)         112.91(2)         89.73(2)         2225           15.767(3)         10.218(3)         100.60(2)         112.91(2)         89.73(2)         2225           12.614(4)         13.195(6)         106.93(2)         106.93(2)         3707           11.192(3)         28.027(5)         108.0(1)         2297           36.404         1044         2297           12.820         18.631         90.33         1348           22.312         22.581         1203         1203           9.5385(9)         12.4486(6)         105.43(1)         82.70(1)         100.28(1)         3969           18.286(4)         38.036(8)         95.40(2)         102         3127           17.839(2)         20.106(2)         95.57(1)         4038           12.918(1)         22.044(4)         91.94(1)         3726 | b         c         a         f         y         DATA         R           9.906(3)         10.490(3)         100.60(2)         112.91(2)         89.73(2)         2225         4.4           15.767(3)         10.218(3)         100.60(2)         112.91(2)         89.73(2)         2225         4.4           15.767(3)         10.218(3)         100.60(2)         112.91(2)         89.73(2)         2255         4.4           15.767(3)         10.218(3)         100.60(2)         112.91(2)         89.73(2)         2255         4.4           12.614(4)         13.195(6)         100.60(2)         106.93(2)         3707         6.2           11.192(3)         28.027(5)         106.93(3)         106.93(3)         3707         5.4           14.192(3)         28.027(5)         108.0(1)         108.0(1)         2297         5.4           12.820         18.631         90.33         1348         5.8           22.312         22.581         100.28(1)         3069         4.8           18.026(4)         105.43(1)         82.70(1)         100.28(1)         3127         8.2           17.839(2)         20.106(2)         95.57(1)         1038         9.8         9.8 | b         c         a         f         y         DATA         R         R <sub>a</sub> 9.906(3)         10.490(3)         100.60(2)         112.91(2)         89.73(2)         2225         4.4         15.767(3)         10.218(3)         100.60(2)         112.91(2)         89.73(2)         2225         4.4         15.767(3)         102.218(3)         100.60(2)         106.93(2)         89.73(2)         2225         4.4         1225         4.4         15.767(3)         102.218(3)         100.60(2)         106.93(2)         89.73(2)         2225         4.4         1225         4.4         126.7         126.7         100.218(3)         100.218(3)         100.218(3)         100.218(3)         100.218(3)         100.218(3)         100.218(3)         100.218(3)         104         5.4         5.4           11.192(3)         28.027(5)         105.43(1)         90.33         1348         5.8         5.6           12.312         22.581         105.43(1)         82.70(1)         100.28(1)         306         4.8         5.4           18.026(4)         18.03(8)         105.43(1)         82.70(1)         100.28(1)         3127         8.2         1.4           17.839(2)         20.106(2)         95.57(1)         1038 </td <td>b         c         a         f         y         DATA         B         R<sub>0</sub>         NOTES           9.906(3)         10.490(3)         100.60(2)         112.91(2)         89.73(2)         2225         4.4         155.767(3)         102.18(3)         100.60(2)         106.93(2)         89.73(2)         2225         4.4         105.71         102.18(3)         100.60(2)         106.93(2)         89.73(2)         2255         4.4         105.71         101.93         6.8         101.93         101.93         101.93         101.93         101.93         101.93         6.8         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.9</td> | b         c         a         f         y         DATA         B         R <sub>0</sub> NOTES           9.906(3)         10.490(3)         100.60(2)         112.91(2)         89.73(2)         2225         4.4         155.767(3)         102.18(3)         100.60(2)         106.93(2)         89.73(2)         2225         4.4         105.71         102.18(3)         100.60(2)         106.93(2)         89.73(2)         2255         4.4         105.71         101.93         6.8         101.93         101.93         101.93         101.93         101.93         101.93         6.8         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.93         101.9 |

-

| a         | ъ         | c          | · a      | e         | Y         | DATA  | R    | Ru   | NOTES | REFERENCE |
|-----------|-----------|------------|----------|-----------|-----------|-------|------|------|-------|-----------|
| 13.12(1)  | 8.71(1)   | 17.25(2)   |          |           |           | 930   | 3.0  | 3.5  |       | 310       |
| 16.41(2)  | 13.81(1)  | 16.91(2)   | •        |           |           | 837   | 3.8  | 4.3  |       | 310       |
| 27.29(3)  | 12.63(1)  | 24.84(3)   |          | 135.55(2) |           | 2216  | 8.5  | 9.0  |       | 319a      |
| 16.265(7) | 14.495(7) | 15.609(6)  |          | 96.86(2)  |           | 2266  | 5.52 | 5.64 |       | 311       |
| 12.565(9) | 12.639(9) | 19.491(13) |          |           |           | 1788  | 5.4  | 6.1  |       | 312       |
| 20.48(2)  | 10.22(2)  | 14.75(3)   |          | 72.71(7)  |           | 1157  | 3.8  | 5.3  |       | 312       |
| 22.019(4) | 9.604(2)  | 15.854(2)  | •        | 104.57(1) | -         | 2598  | 5.14 | 5.69 |       | 313       |
| 16.828(8) | 11.515(6) | 10.667(5)  | 66.05(1) | 107.37(1) | 100.41(1) | 56 39 | 6.2  | 8.3  |       | 314       |

References p. 132

| 325 | C <sub>36</sub> H <sub>30</sub> Cl <sub>3</sub> KOP <sub>2</sub> Eu                                                        | Bu(NO)Cl <sub>3</sub> (PPh <sub>3</sub> ) <sub>2</sub> | H.  | 12/a  | 4 |
|-----|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----|-------|---|
| 327 | С <sub>36</sub> 8 <sub>30</sub> 8 <sub>2</sub> 0 <sub>2</sub> 08Р2- <sup>3</sup> С6 <sup>8</sup> 6                         | 0s(50)2(PPh3)2-3C6H6                                   | м   | P21/n | 4 |
| 332 | C <sub>36</sub> H <sub>30</sub> N <sub>2</sub> O <sub>2</sub> P <sub>2</sub> Rh <sup>+</sup> .C10,, <sup>-</sup>           | [Rh(NO)2(PPh3)2]C10.                                   | м   | C2/c  | 4 |
| 326 | C <sub>36</sub> H <sub>30</sub> N <sub>2</sub> O <sub>2</sub> P <sub>2</sub> Ru                                            | Ru(NO)2(PPb3)2                                         | M   | P21/n | 4 |
| 328 | C <sub>36</sub> H <sub>31</sub> N <sub>2</sub> O <sub>3</sub> OaP <sub>2</sub> <sup>+</sup> .F <sub>6</sub> P <sup>-</sup> | [Os (NO) 2 (OH) (PPh 3) 2 ] PF6                        | н   | P21/c | 4 |
| 324 | C <sub>64</sub> H <sub>28</sub> FeH50                                                                                      | Fe(90)(tpp)                                            | Tet | 14/m  | 2 |
| 333 | Br5IrNO.E <sup>+</sup> .H <sub>2</sub> O                                                                                   | K[Ir(NO)Br5].H2O                                       | · 0 | Pnma  | 4 |
| 334 | C15IrBO .K .H20                                                                                                            | K[Ir(N0)C15].H20                                       | o   | Pama  | 4 |

#### DINITROGEN COMPLEXES

128

| No. | FORMULA                                 | STRUCTURE                                                                                       | CRYSTAL<br>CLASS | SPACE   | z |
|-----|-----------------------------------------|-------------------------------------------------------------------------------------------------|------------------|---------|---|
| 337 | C52B48 <sup>MON4</sup> P4               | trans-Ho(N2)2(dppe)2                                                                            | Tri              | PĪ      | 1 |
| 338 | C64H88Cl6HoN4P8Re2                      | trans-MoCl <sub>4</sub> [(N <sub>2</sub> )BeCl(PMe <sub>2</sub> Ph) <sub>4</sub> ] <sub>2</sub> | M                | 921/c   | 2 |
|     | H15N70s <sup>2+</sup> .2Br <sup>-</sup> | [Os (N2) (NE3) 5]Br2                                                                            | Tet              | P42/mmc |   |
| -   | H15N70m2+.201                           | [0s(N2)(NH3)5]C12                                                                               | Tet              | P42/nm  |   |
|     |                                         |                                                                                                 | · · .            |         |   |

### ARYLDIAZO, ARYLDIIMINE AND RELATED COMPLEXES

| No.             | FORMULA                                                                                                                      | STRUCTURE                                 | CRYSTAL<br>CLASS                                     | SPACE<br>GROUP             | z |
|-----------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|----------------------------|---|
| 345             | CleH34ClFN222Pt                                                                                                              | trans-PtCl(R2C6H4F-p)(PEt3)2              | M                                                    | C2/c                       | 4 |
| 346             | C18H37C1F32P2Pt+BF4                                                                                                          | {PtC1[H2N2H(C6H4F-p)](PE+3)2}BF4          | D                                                    | Pone                       | 4 |
| 33 <del>9</del> | С <sub>26</sub> н <sub>ь0</sub> ноя <sub>5</sub> S <sub>5</sub> <sup>+</sup> .С <sub>2ь</sub> н <sub>20</sub> в <sup>-</sup> | {No(N2EtPh)[52CH(CH2)5]3]BPh4             | M                                                    | P21                        | 2 |
| 344             | C42842CIN2P384+.F6PC82C12                                                                                                    | [%h(#2Ph)Cl{PhP[(CH2)3PPh2]2}]-           | Tri                                                  | PĪ                         | 2 |
|                 |                                                                                                                              | PF6.CB2C12                                | •                                                    |                            |   |
| 343             | C <sub>63</sub> H <sub>37</sub> Cl <sub>3</sub> H <sub>2</sub> P <sub>2</sub> H.CH <sub>2</sub> Cl <sub>2</sub>              | Bu(H2tol-p)Cl3(PPb3)2.CH2Cl2              | н                                                    | <b>P2</b> 1/c              | 4 |
| 340             | C53H51THON2P4                                                                                                                | Ho(N <sub>2</sub> Me)I(dppe) <sub>2</sub> | Tri                                                  | рĨ                         | 1 |
| 342             | C53H52BrH2P4W <sup>+</sup> .Br <sup>-</sup>                                                                                  | {W(H2HHe)Br(dppe)2]Br                     | M                                                    | P2 <sub>1</sub> /c         | 4 |
| 341             | C58H59IMON2P4.JC6H6                                                                                                          | Ho(H2Cy)I(dpp#)2.3C6H6                    | на на селото<br>1911 — Манералия<br>1914 — Манералия | <b>F</b> 2 <sub>1</sub> /c | 4 |
|                 |                                                                                                                              |                                           |                                                      | 1                          |   |

| 129 |  |
|-----|--|
|-----|--|

|           |           |           |           |      |     |      | 129 |
|-----------|-----------|-----------|-----------|------|-----|------|-----|
| 15.877(3) | 9.540(2)  | 22.326(4) | 102.79(1) | 2671 | 5.8 | 6.8  | 17  |
| 17.034(5) | 18.735(5) | 10.799(3) | 96.81(1)  | 3455 | 3.1 | 3.9  | 14  |
| 17.134(4) | 12.327(3) | 17.166(4) | 108.17    | 4649 | 6.1 | 9.0  | 315 |
| 9.96(1)   | 37.01(2)  | 9.31(1)   | 111.44(3) | 927  | •   | 4.85 | 316 |
| 18.433(2) | 10.654(1) | 18.952(4) | 91.80(2)  | 3646 | 5.7 | 6.2  | 317 |
| 13.468(9) |           | 9.755(8)  |           | 951  | 4.4 | 6.1  | 318 |
| 23.272(9) | 7.261(5)  | 6.302(3)  |           | 1291 | 9.6 | 10   | 319 |
| 22.416(5) | 6.935(1)  | 6.069(1)  |           | 1704 | 4.9 | 8.0  | 319 |

| 22.416(5) | 6.935(1)  | 6.069(1)  |          |           |          | 1704 | 4.9 | 8.0            |       | 319       |  |
|-----------|-----------|-----------|----------|-----------|----------|------|-----|----------------|-------|-----------|--|
|           |           |           |          |           |          |      |     |                |       |           |  |
| a         | Ъ         | c         | a        | ß         | Y        | DATA | R   | R              | NOTES | REFERENCE |  |
| 10.662(3) | 12.654(3) | 10.527(3) | 92.48(1) | 118.89(2) | 71.20(1) | 3253 | ÷   |                |       | 320       |  |
| 16.710    | 14.164    | 19.084    |          | 114.3     |          | 1306 | 7.4 |                |       | 321       |  |
| 17.45     |           | 16.73     |          |           |          |      |     |                | œ     | 322       |  |
| 20.74     |           | 18.63     |          |           |          |      |     |                | CD    | 322       |  |
|           |           |           |          |           |          |      |     |                |       |           |  |
|           |           |           |          |           |          |      | •   |                |       |           |  |
| a         | ъ         | c         | a        | в         | Y        | DATA | R   | R <sub>U</sub> | NOTES | REFERENCE |  |

| 4            | Ъ          | c          | <b>a</b>  | B         | ¥.        | DATA | R   | RW   | NOTES | REFERENCE |
|--------------|------------|------------|-----------|-----------|-----------|------|-----|------|-------|-----------|
| 9.320(6)     | 20.244(9)  | 12.826(6)  |           | 97.59(1)  |           | 2011 | 8.5 | 10.1 |       | 323       |
| 16.062(7)    | 13.625(6)  | 12.085(5)  |           |           |           | 3015 | 4.5 | 5.4  |       | 324       |
| 15.467(2)    | 13.131(2)  | 12.895(2)  |           | 103.55(5) |           | 1946 | 6.3 |      |       | 325       |
| 12.675(7)    | 13.254(7)  | 15.092(10) | 94.78(5)  | 99.47(5)  | 112.40(8) | 4031 | 5.7 | 7.8  |       | 326       |
|              |            |            |           |           |           |      |     |      |       |           |
| 12.406(8)    | 18.421(13) | 18.565(13) |           | 93.05(1)  |           | 5100 | 5.8 | 6.7  |       | 17        |
| 10.371(1)    | 10.628(1)  | 12.699(2)  | 103.81(1) | 95.34(1)  | 118.12(1) | 4211 | 9.8 |      |       | 327       |
| 13.463(2)    | 21.090(3)  | 18.933(3)  |           | 93.93(1)  |           | 4001 | 6.2 |      |       | 325       |
| 12.643(6)    | 21.351(7)  | 20.422(5)  |           | 98.91(3)  |           | 5400 | 8.2 |      |       | 327       |
| References p | . 182      |            |           | 1         |           |      | -   | t e  |       | -         |

## BINARY TERTIARY PHOSPHINE COMPLEXES

| No - | FORMILA                                          | STRUCTURE                                                                                                        | CRYSTAL<br>CLASS | SPACE | Z  |
|------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------|-------|----|
| 348  | C16H12FeNiP.S.                                   | N1{PF2(CLH3S)}L                                                                                                  | Tet              | P421c | 2  |
| 349  | C36H66P2Pt                                       | Pt(PCy <sub>3</sub> ) <sub>2</sub>                                                                               | н                | CZ/c  | 4  |
| 347  | C52H52IrP4 <sup>+</sup> .8F4 <sup>-</sup> .C6H12 | [Ir(PMePh2),]BFC6H12                                                                                             | M                | C2/c  | 12 |
| 350  | C54H45CuP3 BF4                                   | [Cu(PPh3)3]BF.                                                                                                   | Trig             | P3    | 3  |
| 309  | CEQHSCP&PT-CEHE                                  | Pt <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub> (PPh <sub>2</sub> ) <sub>2</sub> .C <sub>6</sub> H <sub>6</sub> | М                | P21/n | 4  |

| a          | ь          | c          | a | B         | Y | DATA | R   | R <sub>u</sub> | NOTES | REFERENCE |
|------------|------------|------------|---|-----------|---|------|-----|----------------|-------|-----------|
| 10.120(2)  |            | 12.427(12) |   | . •       |   | 573  | 5.0 | 5.3            |       | 328       |
| 16.801     | 9.659      | 22.310     |   | 92.396    |   | 3522 | 5.6 |                |       | 329       |
| 36.805(8)  | 22.93(2)   | 21.676(4)  |   | 121.41(1) |   | 7905 | 6.0 |                |       | 330       |
| 18.749(3)  |            | 11.588(2)  |   |           |   | 2615 | 5.0 |                |       | 331       |
| 21.533(11) | 16.933(16) | 15.870(10) |   | 97.34(6)  |   | 3694 | 6.7 |                |       | 297       |

References p. 132

- Molecular Structure by Diffraction Methods, ed. G.A. Sim and L.E. Sutton, The Chemical Society (London), vol. 2 (1975).
- Molecular Structures and Dimensions, vol. 5, Bibliography 1972-73: Organic and Organometallic Crystal Structures, ed. 0. Kennard, D.G. Watson and W.G. Town; vol. 6, Bibliography 1973-74, ed. O. Kennard, D.G. Watson, F.H. Allen and S.M. Weeds; Oosthoek, Utrecht, 1974 and 1975.
- 3. A. Domenicano, A. Vaciago and C.A. Coulson, Acta Cryst., B31 (1975) 1630.
- 4. B.K. Teo, M.B. Hall, R.F. Fenske and L.F. Dahl, Inorg. Chem., 14 (1975) 3103.
  - 5. J.L. Peterson and L.F. Dahl, J.Amer.Chem.Soc., 97 (1975) 6416.
- 6. C.J. Ballhausen and J.P. Dahl, Acta Chem. Scand., 15 (1961) 1333.
- 7. N.W. Alcock, J. Chem. Soc. (A), (1967) 2001.
- 8. J.L. Peterson and L.F. Dahl, J.Amer.Chem.Soc., 97 (1975) 6422.
- J.L. Peterson, D.L. Lichtenberger, R.F. Fenske and L.F. Dahl, J.Amer.Chem.Soc., 97 (1975) 6433.
- M.J. Bennett, P.B. Donaldson, P.B. Hitchcock and R. Mason, Inorg.Chim.Acta., 12 (1975) L9.
- 11. J.R. Miller and F.S. Stephens, J.C.S. Dalton, (1975) 833.
- 12. M. Laing, M.J. Nolte and E. Singleton, J.C.S. Chem. Comm., (1975) 660.
- J.A. McGinnety, N.C. Payne and J.A. Ibers, J.Amer.Chem.Soc., 91 (1969)
   6301.
- 14. B.L. Haymore and J.A. Ibers, Inorg. Chem., 14 (1975) 2610.
- 15. M.I. Bruce, J. Organometallic Chem., 53 (1973) 141.
- 16. N.G. Connelly, Inorg. Chim. Acta Rev., 6 (1972) 47.
- 17. B.L. Haymore and J.A. Ibers, Inorg. Chem., 14 (1975) 3060.
- 18. K.R. Dymock and G.J. Palenik, Inorg. Chem., 14 (1975) 1220.
- 19. A. Haaland, Topics Current Chem., 53 (1975) 1.

- 20. D.G. Schmidling, J.Molec.Struct., 24 (1975) 1.
- N.-S. Chiu, L. Schäfer and R. Seip, J.Organometallic Chem., 101 (1975)
   331.
- 22. E. Gard, A. Haaland, D.P. Novak and R. Seip, J.Organometallic Chem., 88 (1975) 181.
- 23. D.W.H. Rankin and A. Robertson, J.Organometallic Chem., 85 (1975) 225.
- D.W.H. Rankin, A. Robertson and R. Seip, J.Organometallic Chem., 88 (1975) 191.
- R.A. Love, T.F. Koetzle, G.J.B. Williams, L.C. Andrews and R. Bau, Inorg.Chem., 14 (1975) 2653.
- 25a. J.A.J. Jarvis, B.T. Kilbourn and P.G. Owston, Acta Cryst., B26 (1970) 876; B27 (1971) 366.
- 26. A. Jost, B. Rees and W.B. Yelon, Acta Cryst., B31 (1975) 2649.
- 27. A. Modinos and P. Woodward, J.C.S. Dalton, (1975) 1516.
- 28. J.J. Daly, F. Sanz and D. Forster, J.Amer.Chem.Soc., 97 (1975) 2551.
- 29. S. Onaka, Bull. Chem. Soc. Japan, 48 (1975) 319.

- M. Green, J.A.K. Howard, J.L. Spencer and F.G.A. Stone, J.C.S. Chem.Comm., (1975) 449.
- P. Domiano, A. Musatti, M. Nardelli and G. Predieri, J.C.S. Dalton, (1975) 2165.
- 32. L.Y.Y. Chan and W.A.G. Graham, Inorg. Chem., 14 (1975) 1778.
- 33. G. Huttner and W. Gartzke, Chem.Ber., 108 (1975) 1373.
- 34. F. Hug and A.C. Skapski, J.Cryst. Molec. Struct., 4 (1974) 411.
- 35. M.R. Churchill and J.J. Hackbarth, Inorg. Chem., 14 (1975) 2047.
- D.J. Brauer, C. Krüger, P.J. Roberts and Y.-H. Tsay, unpublished work cited in E.A. Koerner von Gustorf, O. Jaenicke, O. Wolfbeis and C.R. Eady, Angew. Chem., 87 (1975) 360; Angew. Chem. Internat. Edit., 14 (1975) 278.
- 37. H.J. Krentzien, M.J. Clark and H. Taube, Bioinorg. Chem., 4 (1975) 143.

- G.K. Barker, M. Green, J.L. Spencer, F.G.A. Stone, B.F. Taylor and A.J. Welch, J.C.S. Chem.Comm., (1975) 804.
- F.Y. Lo, C.E. Strouse, K.P. Callahan, C.B. Knobler and M.F. Hawthorne, J.Amer.Chem.Soc., 97 (1975) 428.
- U. Müller and R. Boese, unpublished work cited in G. Schmid, R. Boese and E. Welz, Chem.Ber., 108 (1975) 260.
- 41. M.J. Barrow and G.A. Sim., J.C.S. Dalton, (1975) 291.
- 42. M.L. Ziegler, H.-E. Sasse and B. Nuber, Z. Naturforsch., 30b (1975) 26.
- 43. M.L. Ziegler, H.-E. Sasse and B. Nuber, Z.Naturforsch., 30b (1975) 22.
- 44. M. Cannas, G. Carta, A. Cristini and G. Marongiu, Acta Cryst., B31 (1975) 2909.
- E.O. Fischer, G. Huttner, W. Kleine and A. Frank, Angew. Chem., 87 (1975)
   781: Angew. Chem. Internat. Edit., 14 (1975) 760.
- G. Huttner, D. Neugebauer and A. Razavi, Angew.Chem., 87 (1975) 353;
   Angew.Chem.Internat.Edit., 14 (1975) 352.
- 47. T. Totani, H. Nakai, M. Shiro and T. Nakagawa, J.C.S. Dalton, (1975) 1938.
- 48. D. Ginderow, Acta Cryst., B31 (1975) 1092.
- R.D. Wilson, S.A. Graham and R. Bau, J. Organometallic Chem., 91 (1975)
   C49.
- G. Huttner, W. Gartzke and K. Allinger, J.Organometallic Chem., 91 (1975)
   47.
- M. Bottrill, R. Goddard, M. Green, R.P. Hughes, M.K. Lloyd, S.H. Taylor and P. Woodward, J.C.S. Dalton, (1975) 1150.
- T.L. Khotsyanova, S.I. Kuznetsov, E.V. Bryukhova and Y.V. Makarov, J.Organometallic Chem., 88 (1975) 351.
- 53. M. Green, R.P. Hughes and A.J. Welch, J.C.S. Chem. Comm., (1975) 487.
- R.A. Abramovitch, J.L. Atwood, M.L. Good and B.A. Lampert, Inorg.Chem., 14 (1975) 3085.
- 55. M.R. Churchill, B.G. DeBoer, F.J. Rotella, O.M. Abu Salah and M.I. Bruce, Inorg.Chem., 14 (1975) 2051.

- 56. W. Bünder and E. Weiss, J. Organometallic Chem., 92 (1975) 65.
- K.-N. Chen, R.M. Moriarty, B.G. DeBoer, M.R. Churchill and H.J.C. Yeh, J.Amer.Chem.Soc., 97 (1975) 5602.
- 58. H.D. Block and R. Allmann, Cryst.Struct.Comm., 4 (1975) 53.
- 59. G.A. Jones and L.J. Guggenberger, Acta Cryst., B31 (1975) 900.
- 60. J.A.K. Howard, I.W. Kerr and P. Woodward, J.C.S. Dalton, (1975) 2466.
- N.I. Kirillova, A.I. Gusev and Y.T. Struchkov, Ch.strukt.Khim., 15 (1974) 718.
- P.B. Hitchcock, J.F. Nixon and J. Sinclair, J.Organometallic Chem., 86 (1975) C34.
- W.R. Cullen, F.W.B. Einstein, R.K. Pomeroy and P.L. Vogel, Inorg. Chem., 14 (1975) 3017.
- 64. W.S. Sheldrick, Acta Cryst., B31 (1975) 1789.
- 65. W.S. Sheldrick, Chem.Ber., 108 (1975) 2242.
- 66. M. Matsumoto and K. Nakatsu, Acta Cryst., B31 (1975) 2711.
- 67. C.H. Wei and L.F. Dahl, Cryst.Struct.Comm., 4 (1975) 583.
- J.R. Shapley, J.B. Keister, M.R. Churchill and B.G. DeBoer, J.Amer.Chem.Soc., 97 (1975) 4145.
- 69. I.L.C. Campbell and F.S. Stephens, J.C.S. Dalton, (1975) 22.
- 70. K. Triplett and M.D. Curtis, J.Amer. Chem. Soc., 97 (1975) 5747.
- 71. G.M. Sheldrick and J.P. Yesinowski, J.C.S. Dalton, (1975) 873.
- J.-Y. Saillard, G. Le Borgne and D. Grandjean, J.Organometallic Chem., 94 (1975) 409.
- 73. M. Green, B. Lewis, J.J. Daly and F. Sanz, J.C.S. Dalton, (1975) 1118.
- W. Siebert, G. Augustin, R. Full, C. Krüger and Y.-H. Tsay, Angew.Chem., 87 (1975) 286; Angew.Chem.Internat.Edit., 14 (1975) 262.
- 75. G. Le Borgne, E. Gentric and D. Grandjean, Acta Cryst., B31 (1975) 2824.
- N.A. Bailey, P.D. Frisch, J.A. McCleverty, N.W. Walker and J. Williams, J.C.S. Chem.Comm., 1975, 350.

- 77. V.L. Goedken and S.-M. Peng, J.C.S. Chem. Comm., (1975) 258.
- 78. D.F. Shriver, D. Lehman and D. Strope, J.Amer. Chem. Soc., 97 (1975) 1594.
- R.C. Petterson, J.L. Cihonsky, F.R. Young and R.A. Levenson, J.C.S. Chem. Comm., (1975) 370.
- C.P. Casey, C.R. Cyr, R.L. Anderson and D.F. Marten, J.Amer.Chem.Soc., 97 (1975) 3053.
- 81. C.B. Knobler, S.S. Crawford and H.D. Kaesz, Inorg. Chem., 14 (1975) 2062.
- R. Bau, B. Don, R. Greatrex, R.J. Haines, R.A. Love and R.D. Wilson, Inorg.Chem., 14 (1975) 3021.
- J.L. Davidson, M. Green, F.G.A. Stone and A.J. Welch, J.C.S. Chem. Comm., (1975) 286.
- J.L. Atwood, K.E. Stone, H.B. Alt, D.C. Hrncir and M.D. Rausch, J.Organometallic Chem., 96 (1975) C4.
- 85 N.W. Alcock, J.M. Brown, J.A. Conneely and J.J. Stofko, J.C.S. Chem.Comm., (1975) 234.
- S.R. Finnimore, R. Goddard, S.D. Killops, S.A.R. Knox and P. Woodward, J.C.S. Chem. Comm., (1975) 391.
- 87. L.J. Guggenberger and R.R. Schrock, J.Amer. Chem. Soc., 97 (1975) 6578.
- 88. D.J. Brauer and C. Krüger, Inorg. Chem., 14 (1975) 3053.
- K.P. Callahan, W.J. Evans, F.Y. Lo, C.E. Strouse and M.F. Hawthorne, J.Amer.Chem.Soc., 97 (1975) 296.
- G. Constant, J.-C. Daran and Y. Jeannin, J. Inorg. Nuclear Chem., 35 (1973) 4083.
- 91. M.M. Yevitz and P.S. Skell, unpublished work cited in P.S. Skell and M.J. McGlinchey, Angew. Chem., 87 (1975) 215; Angew. Chem. Internat. Edit., 14 (1975) 195.
- 92. R. Meij and K. Olie, Cryst. Struct. Comm., 4 (1975) 515.
- D.J. Doonan, A.L. Balch, S.Z. Goldberg, R. Bisenberg and J.S. Miller, J.Amer.Chem.Soc., 97 (1975) 1961.

- G. Longoni, P. Chini, L.D. Lower and L.F. Dahl, J.Amer.Chem.Soc., 97 (1975) 5034.
- M.J. Barrow, A.A. Freer, W. Harrison, G.A. Sim, D.W. Taylor and F.B. Wilson, J.C.S. Dalton, (1975) 197.
- M.R. Churchil, B.G. DeBoer, F.J. Rotella, E.W. Abel and R.J. Rowley, J.Amer.Chem.Soc., 97 (1975) 7158.
- 97. V.W. Day, K.J. Reimer and A. Shaver, J.C.S. Chem. Comm., (1975) 403.
- Y. Dusausoy, J. Protas, J. Besancon and S. Top, J. Organometallic Chem., 94 (1975) 47.
- 99. W.T. Robinson and R.N. Grimes, Inorg. Chem., 14 (1975) 3056.
- 100. P.A. Tucker, W. Scutcher and D.R. Russell, Acta Cryst., B31 (1975) 592.
- M. Green, J.A.K. Howard, R.P. Hughes, S.C. Kellett and P. Woodward, J.C.S. Dalton, (1975) 2007.
- 102. M.R. Churchill and K.-K.G. Lin, Inorg. Chem., 14 (1975) 1675.
- J.L. Davidson, M. Green, F.G.A. Stone and A.J. Welch, J.Amer.Chem.Soc.,
   97 (1975) 7490.
- P.W.R. Corfield, unpublished work cited in L.A. Paquette, S.V. Ley,
   S. Maiorana, D.F. Schneider, M.J. Broadhurst and R.A. Boggs,
   J.Amer. Chem. Soc., 97 (1975) 4658.
- 105. M.R. Churchill, F.J. Rotella, R.B. King and M.N. Ackermann, J.Organometallic Chem., 99 (1975) C15.
- 106. R. Aumann, H. Auerbeck and C. Krüger, Chem. Ber., 108 (1975) 3336.
- 107. R.J. Klinger, W. Butler and M.D. Curtis, J. Amer. Chem. Soc., 97 (1975) 3535.
- 108. I.F. Taylor and E.L. Amma, Acta Cryst., B31 (1975) 598.
- R.P. Shilbaeva, L.O. Atovmyan and L.P. Rozenberg, Zh.strukt.Khim.,
   16 (1975) 147.
- 110. P.O. Tremmel, K. Weidenhammer. H. Wienand and M.L. Ziegler, Z.Naturforsch., 30b (1975) 699.

- 111. B.M. Foxman, J.C.S. Chem. Comm., (1975) 221.
- 112. J.A.K. Howard, S.C. Kellett and P. Woodward, J.C.S. Dalton, (1975) 2332.
- 113. B. Cetinkaya, P.B. Hitchcock, M.F. Lappert and P.L. Pye, J.C.S. Chem.Comm., (1975) 683.
- 114. R.A. Forder, G.D. Gale and K. Prout, Acta Cryst., B31 (1975) 297.
- 115. A. Ducruix, H. Felkin, C. Pascard and G.K. Turner, J.C.S. Chem.Comm., (1975) 615.
- 116. J. Dirand, L. Ricard and R. Weiss, Inorg. Nuclear Chem. Letters, 11 (1975) 661.
- 117. W.E. Carroll, M. Green, F.G.A. Stone and A.J. Welch, J.C.S. Dalton, (1975) 2263.
- 118. V.G. Albano, G. Ciani, M. Freni and P. Romiti, J.Organometallic Chem., 96 (1975) 259.
- 119. J. Takats, J. Organometallic Chem., 90 (1975) 211.
- R.R. Ryan, R.A. Pennemann and B. Kanellakopulos, J.Amer.Chem.Soc., 97 (1975) 4258.
- P. Batail, D. Grandjean, D. Astruc and R. Dabard, J.Organometallic Chem., 102 (1975) 79.
- 122. F.A. Cotton, V.W. Day and K.I. Hardcastle, J.Organometallic Chem., 92 (1975) 369.
- 123. M.G.B. Drew and C.J. Rix, J. Organometallic Chem., 102 (1975) 467.
- 124. G. Huttner, J. von Seyerl, M. Marsili and H.-G. Schmid, Angew.Chem.,
  87 (1975) 455; Angew.Chem.Internat.Edit., 14 (1975) 434.
- 125. F.A. Cotton and P. Lahuerta, Inorg. Chem., 14 (1975) 116.
- 126. F.A. Cotton, J.M. Troup, W.E. Billups, L.P. Lin and C.V. Smith, J.Organometallic Chem., 102 (1975) 345.
- 127. F.S. Stephens, J.C.S. Dalton, (1975) 230.
- 128. G. Huttner and H. Lorenz, Chem. Ber., 108 (1975) 1864.

129. R.S. Dickson, H.P. Kirsch and D.J. Lloyd, J.Organometallic Chem., 101 (1975) C48.

- 130. I.L.C. Campbell and F.S. Stephens, J.C.S. Dalton, (1975) 226.
- F.A. Cotton, J.D. Jamerson and B.R. Stults, J. Organometallic Chem., 94 (1975) C53.
- 132. V. Bätzel, U. Müller and R. Allmann, J.Organometallic Chem., 102 (1975) 109.
- 133. F.W.B. Einstein and J.S. Field, J.C.S. Dalton, (1975) 172.
- D. Allen, C.J.L. Lock, G. Turner and J. Powell, Canad. J. Chem.,
   53 (1975) 2707.
- 135. I.F. Taylor and E.L. Amma, J.Cryst.Molec.Struct., 5 (1975) 129.
- P.S. Maddren, A. Modinos, P.L. Timms and P. Woodward, J.C.S. Dalton, (1975) 1272.
- 137. B.E. Mann, P.M. Bailey and P.M. Maitlis, J.Amer. Chem. Soc., 97 (1975) 1275.
- 138. M.G.B. Drew and J.D. Wilkins, J.C.S. Dalton, (1975) 1984.
- 139. A.J. Welch, J.C.S. Dalton, (1975) 2270.
- 140. M. Green, J.A.K. Howard, J.L. Spencer and F.G.A. Stone, J.C.S. Dalton, (1975) 2274.
- V.G. Albano, G. Ciani, S. Martinengo, P. Chini and G. Giordano, J.Organometallic Chem., 88 (1975) 381.
- 142. M.R. Churchill and S.W.-Y. Chang, Inorg. Chem., 14 (1975) 1680.
- P. Diversi, G. Ingrosso, A. Immirzi and M. Zocchi, J.Organometallic Chem., 102 (1975) C49.
- 144. M.G.B. Drew and J.D. Wilkins, Acta Cryst., B31 (1975) 2642.
- 145. T.J. Giordano and P.G. Rasmussen, Inorg. Chem., 14 (1975) 1628.
- 146. D.R. Russell and P.A. Tucker, J.C.S. Dalton (1975) 1743.
- 147. E. Gyepes and F. Hanic, Cryst.Struct.Comm., 4 (1975) 229.
- R.J. Restivo, G. Ferguson, D.J. O'Sullivan and F.J. Lalor, Inorg. Chem., 14 (1975) 3046.
- 149. J. Browning and B.R. Penfold, J.Cryst. Molec. Struct., 4 (1974) 347.
- 150. I.L.C. Campbell and F.S. Stephens, J.C.S. Dalton, (1975) 982.

- H.C. Clark, D.G. Ibbott, N.C. Payne and A. Shaver, J.Amer.Chem.Soc., 97 (1975) 3555.
- 152. J.J. Bonnet, Y. Jeannin, P. Kalck, A. Maisonnat and R. Poilblanc, Inorg.Chem., 14 (1975) 743.
- 153. J. Howard and P. Woodward, J.C.S. Dalton, (1975) 59.
- 154. J.D. Edwards, R. Goddard, S.A.R. Knox, R.J. McKinney, F.G.A. Stone and P. Woodward, J.C.S. Chem. Comm., (1975) 828.
- 155. B.T. Huie, C.B. Knobler and H.D. Kaesz, J.C.S. Chem. Comm., (1975) 684.
- L.F. Dahl, P.D. Frisch and G.R. Gust, J. Less-Common Metals., 36 (1974)
   255.
- 157. H. Preut and H.-J. Haupt, Chem.Ber., 108 (1975) 1447.
- J.L. Davidson, M. Green, J.A.K. Howard, S.A. Mann, J.Z. Nyathi,
   F.G.A. Stone and P. Woodward, J.C.S. Chem.Comm., (1975) 803.
- 159. R. Goddard, A.P. Humphries, S.A.R. Knox and P. Woodward, J.C.S. Chem.Comm., (1975) 507.
- 160. P.E. Riley and R.E. Davis, Inorg. Chem., 14 (1975) 2507.
- G.J. Kruger, R.O. Heckroodt, R.H. Reimann and E. Singleton, J.Organometallic Chem., 87 (1975) 323.
- 162. G.W. Halstead, E.C. Baker and K.N. Raymond, J.Amer. Chem. Soc., 97 (1975) 3049.
- 163. M. Green, J.A.K. Howard, A. Laguna, M. Murray, J.L. Spencer and F.G.A. Stone, J.C.S. Chem. Comm., (1975) 451.
- 164. G. Perego, M. Cesari, F. Farina and G. Lugli, Gazzetta, 105 (1975) 643.
- K.D. Bos, E.J. Bulten, J.G. Noltes and A.L. Spek, J.Organometallic Chem.,
   92 (1975) 33.
- 166. H. Vahrenkamp, Z. Naturforsch., 30b (1975) 814.
- 167. K. Yasufuku, K. Aoki and H. Yamazaki, Buil. Chem. Soc. Japan., 48 (1975) 1616.
- 168. M.R. Churchill and K.-K.G. Lin, Inorg. Chem., 14 (1975) 1133.
- G. Huttner, H.-D. Müller, A. Frank and H. Lorenz, Angew. Chem.,
   87 (1975) 714; Angew. Chem. Internat. Edit., 14 (1975) 705.

- 170. D.G. Sekutowski and G.D. Stucky, Inorg. Chem., 14 (1975) 2192.
- 171. J.L. Atwood, W.E. Hunter, D.C. Hrncir, E. Samuel, H. Alt and M.D. Rausch, Inorg. Chem., 14 (1975) 1757.
- 172. A.J. Conway, G.J. Gainsford, R.R. Schrieke and J.D. Smith, J.C.S. Dalton, (1975) 2499.
- 173. G. Huttner and H. Lorenz, Chem.Ber., 108 (1975) 973.
- 174. B.W. Davies and N.C. Payne, J. Organometallic Chem., 102 (1975) 245.
- 175. T.C. McKenzie, R.D. Sanner and J.E. Bercaw, J.Organometallic Chem., 102 (1975) 457.
- 176. M. Green, J.L. Spencer, F.G.A. Stone and A.J. Welch, J.C.S. Dalton, (1975) 179.
- 177. A.J. Welch, J.C.S. Dalton, (1975) 1473.
- 178. R. Walker and K.W. Muir, J.C.S. Dalton, (1975) 272.
- 179. L.J. Guggenberger and R.R. Schrock, J.Amer. Chem. Soc., 97 (1975) 2935.
- 180. V.G. Albano, M. Sansoni, P. Chini, S. Martinengo and D. Strumolo, J.C.S. Dalton, (1975) 305.
- 181. V.G. Andrianov, Y.T. Struchkov, V.N. Setkina, V.I. Zdanovich,
   A.Z. Zhakaeva and D.N. Kursanov, J.C.S. Chem.Comm., (1975) 117.
- 182. A.D. Redhouse, J. Organometallic Chem., 99 (1975) C29.
- 183. R. Goddard, A.P. Humphries, S.A.R. Knox and P. Woodward, J.C.S. Chem. Comm., (1975) 508.
- 184. M. Bottrill, R. Goddard, M. Green, R.P. Hughes, M.K. Lloyd, B. Lewis and P. Woodward, J.C.S. Chem. Comm., (1975) 253.
- 185. K.W. Muir, R. Walker, E.W. Abel, T. Blackmore and R.J. Whitley, J.C.S. Chem.Comm., (1975) 698.
- 186. D.R. Russell and P.A. Tucker, J.C.S. Dalton, (1975) 1749.

- S.J. LaPlaca, I. Bernal, H. Brunner and W.A. Herrmann, Angew. Chem.,
   87 (1975) 379; Angew. Chem. Internat. Edit., 14 (1975) 353.
- 188. U. Behrens and E. Weiss, J. Organometallic Chem., 96 (1975) 399.

- M. Horike, Y. Kai, N. Yasuoka and N. Kasai, J.Organometallic Chem., 86 (1975) 269.
- 190. F.A. Cotton and D.L. Hunter, J.Amer.Chem.Soc., 97 (1975) 5739.
- 191. R.A. Forder, G.D. Gale and K. Prout, Acta Cryst., B31 (1975) 307.
- 192. G. LeBorgne and D. Grandjean, J. Organometallic Chem., 92 (1975) 381.
- 193. R.C. Ryan and L.F. Dahl, J.Amer. Chem. Soc., 97 (1975) 6904.
- 194. J. Browning, M. Green, A. Laguna, L.E. Smart, J.L. Spencer and F.G.A. Stone, J.C.S. Chem. Comm., (1975) 723.
- 195. P.M. Treichel, J.W. Johnson and J.C. Calabrese, J.Organometallic Chem., 88 (1975) 215.
- 196. C.L. Raston and A.H. White, J.C.S. Dalton, (1975) 2418.
- 197. G. delPiero, G. Perego and M. Cesari, Gazzetta, 105 (1975) 529.
- 198. U. Behrens and E. Weiss, J. Organometallic Chem., 96 (1975) 435.
- 199. J.A.J. Jarvis and R. Whyman, J.C.S. Chem. Comm., (1975) 562.
- 200. D.M. Roe, C. Calvo, N. Krishnamachari and P.M. Maitlis, J.C.S. Dalton, (1975) 125.
- 201. D.J. Mabbott, P.M. Bailey and P.M. Maitlis, J.C.S. Chem.Comm., (1975) 521.
- 202. C.L. Raston and A.H. White, J.C.S. Dalton, (1975) 2422.
- V.G. Albano, A. Ceriotti, P. Chini, G. Ciani, S. Martinengo and
   W.M. Anker, J.C.S. Chem.Comm., (1975) 859.
- M. Tachikawa, J.R. Shapley and C.G. Pierpont, J.Amer.Chem.Soc., 97 (1975) 7174.
- 205. A.J. Conway, P.B. Hitchcock and J.D. Smith, J.C.S. Dalton, (1975) 1945.
- 206. C.M. Lukehart, G.P. Torrence and J.V. Zeile, J.Amer.Chem.Soc., 97 (1975) 6903.
- Z. Kaluski, A.I. Gusev and Y.T. Struchkov, Bull.Acad.Polon.Sci., Ser.Sci.Chim., 22 (1974) 739.
- F.A. Cotton, B.A. Frenz and C.A. Murillo, J.Amer.Chem.Soc.,
   97 (1975) 2118.

- 209. D.A. Clarke, R.D.W. Kemmitt, D.R. Russell and P.A. Tucker, J.Organometallic Chem., 93 (1975) C37.
- K. Onuma, Y. Kai, N. Yasuoka and N. Kasai, Bull. Chem. Soc. Japan, 48 (1975) 1696.
- 211. L.J. Guggenberger and R.R. Schrock, J.Amer. Chem. Soc., 97 (1975) 6693.
- 212. W.P. Bosman and A.W. Gal, Cryst.Struct.Comm., 4 (1975) 465.
- 213. E.C. Baker, L.D. Brown and K.N. Raymond, Inorg. Chem., 14 (1975) 1376.
- 214. J. Browning and B.R. Penfold, J. Cryst. Molec. Struct., 4 (1974) 335.
- E. Sappa, L. Milone and G.D. Andreetti, Inorg. Chim. Acta, 13 (1975) 67;
   addendum (structure factor table) in Inorg. Chim. Acta, 14 (1975) L22.
- 216. H.R. van der Wal, F. Overzet, H.O. van Oven, J.L. de Boer, H.J. de Liefde Meijer and F. Jellinek, J.Organometallic Chem., 92 (1975) 329.
- 217. R.J. Dubey, Acta Cryst., B31 (1975) 1860.
- 218. N.A. Bailey, B.M. Higson and E.D. McKenzie, J.C.S. Dalton, (1975) 1105.
- 219. M. Zocchi and G. Tieghi, J.C.S. Dalton, (1975) 1740.
- 220. I.L.C. Campbell and F.S. Stephens, J.C.S. Dalton, (1975) 340.
- 221. D.A. Stotter, G.M. Sheldrick and R. Taylor, J.C.S. Dalton, (1975) 2124.
- 222. F.C. March, R. Mason, K.M. Thomas and B.L. Shaw, J.C.S. Chem. Comm., (1975) 584.
- 223. P.G. Harrison, T.J. King and J.A. Richards, J.C.S. Dalton, (1975) 2097.
- 224. M. Peteau-Boisdenghien, J. Meunier-Piret and M. van Meerssche, Cryst.Struct.Comm., 4 (1975) 375.
- 225. K. Yasufuku, K. Aoki and H. Yamazaki, J.Organometallic Chem., 84 (1975) c28.
- 226. J.P. Declercq, G. Germain, M. van Meerssche and S.A. Chaudhury, Acta Cryst., B31 (1975) 2896.
- 227. V.G. Andrianov, Y.T. Struchkov, N.K. Baranetskeja, V.N. Setkina and D.N. Kursanov, J.Organometallic Chem., 101 (1975) 209.
- 228. I.L.C. Campbell and F.S. Stephens, J.C.S. Dalton, (1975) 337.

- 229. R.A. Forder, I.W. Jefferson and K. Prout, Acta Cryst., B31 (1975) 618.
- J.R. Blickensderfer, C.R. Knobler and H.D. Kaesz, J.Amer.Chem.Soc.,
   97 (1975) 2686.
- 231. R.J. Doedens, J.T. Veal and R.G. Little, Inorg. Chem., 14 (1975) 1138.
- 232. F.W.B. Einstein and J.S. Field, J.C.S. Dalton, (1975) 1628.
- 233. M. Green, J.A. Howard, J.L. Spencer and F.G.A. Stone, J.C.S. Chem.Comm., (1975) 1.
- 234. C.J. Commons and B.F. Hoskins, Aust. J. Chem., 28 (1975) 1201.
- 235. N.V. Raghavan and R.E. Davis, J.Cryst.Molec.Struct., 5 (1975) 163.
- 236. M.R. Churchill and S.W.-Y. Chang, Inorg. Chem., 14 (1975) 98.
- 237. A. Modinos and P. Woodward, J.C.S. Dalton, (1975) 2134.
- Y.S. Wong, H.N. Paik, P.C. Chieh and A.J. Carty, J.C.S. Chem. Comm., (1975) 309.
- R.R. Ryan, R. Schaeffer, P. Clark and G. Hartwell, Inorg.Chem., 14 (1975) 3039.
- 240. M.J. Nolte and E. Singleton, Acta Cryst., B31 (1975) 2223.
- R. Mason, K.M. Thomas and G.A. Heath, J.Organometallic Chem., 90 (1975) 195.
- 242. C. Krüger and H. Kisch, J.C.S. Chem. Comm., (1975) 65.
- H. Yamazaki, K. Aoki, Y. Yamamoto and Y. Wakatsuki, J.Amer.Chem.Soc., 97 (1975) 3546.
- 244. P.E. Riley and R.E. Davis, Acta Cryst., B31 (1975) 2928.
- 245. S.O. Grim, L.J. Matienzo, D.P. Shah, J.A. Statler and J.M. Stewart, J.C.S. Chem. Comm., (1975) 928.
- 246. A. Konietzny, P.M. Bailey and P.M. Maitlis, J.C.S. Chem. Comm., (1975) 78.
- 247. K. Prout and R.A. Forder, Acta Cryst., B31 (1975) 852.
- 248. U. Thewalt and D. Schomburg, Z. Naturforsch., 30b (1975) 636.
- 249. L.D. Brown, D.R. Greig and K.N. Raymond, Inorg. Chem., 14 (1975) 645.
- 250. F.A. Jurnak, D.R. Greig and K.N. Raymond, Inorg. Chem., 14 (1975) 2585.
- 251. D.J. Lewis and S.J. Lippard, J.Amer. Chem. Soc., 97 (1975) 2697 (corrigendum, 4788).
- 252. V.W. Day, R.O. Day, J.S. Kristoff, F.J. Hirsekorn and E.L. Muetterties, J.Amer.Chem.Soc., 97 (1975) 2571.
- P.S. Braterman, R.J. Cross, L. Manojlovic-Muir, K.W. Muir and
   G.B. Young, J.Organometallic Chem., 84 (1975) C40.
- 254. M. Aresta, C.F. Nobile, V.G. Albano, E. Forni and M. Manassero, J.C.S. Chem. Comm., (1975) 636.
- 255. D.R. Russell and P.A. Tucker, J.C.S. Dalton, (1975) 1752.
- 256. G.R. Clark, K.R. Grundy, R.O. Harris, S.M. James and W.R. Roper, J.Organometallic Chem., 90 (1975) C37.
- 257. G.R. Clark, J.M. Waters and K.R. Whittle, J.C.S. Dalton, (1975) 2233.
- 258. A.P. Gaughan and J.A. Ibers, Inorg. Chem., 14 (1975) 3073.
- R.J. Restivo, G. Ferguson, T.L. Kelly and C.V. Senoff,
   J.Organometallic Chem., 90 (1975) 101.
- 260. D.R. Russell and P.A. Tucker, J.C.S. Dalton, (1975) 2222.
- G. Huttner, H.-D. Miller, A. Frank and H. Lorenz, Angew. Chem.,
   87 (1975) 597; Angew. Chem. Internat. Edit., 14 (1975) 572.
- 262. J.M. Baraban and J.A. McGinnety, J.Amer. Chem. Soc., 97 (1975) 4232.
- 263. J.J. de Boer and D. Bright, J.C.S. Dalton, (1975) 662.
- 264. A. Takenaka, Y. Sasada, H. Ogoshi, T. Omura and Z. Yoshida, Acta Cryst., B31 (1975) 1.
- 265. N. Yasuoka, M. Morita, Y. Kai and N. Kasai, J.Organometallic Chem., 90 (1975) 111.
- 266. G.B. Robertson and P.O. Whimp, J.Amer. Chem. Soc., 97 (1975) 1051.
- 267. M.E. Jason and J.A. McGinnety, Inorg. Chem., 14 (1975) 3025.
- 268. H. Stoeckli-Evans, Helv. Chim. Acta, 57 (1974) 684.
- M. Biagini Cingi, D.A. Clemente, L. Magon and U. Mazzi, Inorg. Chim. Acta, 13 (1975) 47.

- 270. A. Clearfield, R. Gopal, I. Bernal, G.A. Moser and M.D. Rausch, Inorg.Chem., 14 (1975) 2727.
- 271. M. Cowie, B.L. Haymore and J.A. Ibers, Inorg. Chem., 14 (1975) 2617.
- 272. J.C. Dewan, K. Henrick, D.L. Kepert, K.R. Trigwell, A.H. White and S.B. Wild, J.C.S. Dalton, (1975) 546.
- 273. R. Brady, W.H. de Camp, B.R. Flynn, M.L. Schneider, J.D. Scott,
   L. Vaska and M.F. Werneke, *Inorg.Chem.*, 14 (1975) 2669.
- 274. P.-T. Cheng, T.R. Jack, C.J. May, S.C. Nyburg and J. Powell, J.C.S. Chem. Comm., (1975) 369.
- 275. J. Fischer, A. Mitschler, R. Weiss, J. Dehand and J.F. Nennig, J.Organometallic Chem., 91 (1975) C37.
- 276. B.L. Haymore and J.A. Ibers, Inorg. Chem., 14 (1975) 1369.
- 277. B.L. Haymore and J.A. Ibers, J.Amer. Chem. Soc., 97 (1975) 5369.
- 278. A. Modinos and P. Woodward, J.C.S. Dalton, (1975) 1534.
- 279. D. Baumann, H. Endres, H.J. Keller, B. Nuber and J. Weiss, Acta Cryst., B31 (1975) 40.
- 280. J. Halpern, B.L. Goodall, G.P. Khare, H.S. Lim and J.J. Pluth, J.Amer.Chem.Soc., 97 (1975) 2301.
- 281. B.W. Davies and N.C. Payne, J. Organometallic Chem., 99 (1975) 315.
- H. Werner, D. Tune, G. Parker, C. Krüger and D.J. Brauer, Angew. Chem.,
   87 (1975) 205; Internat. Edit., 14 (1975) 185.
- N.J. Taylor, H.N. Paik, P.C. Chieh and A.J. Carty, J.Organometallic Chem., 87 (1975) C31.
- 284. G.R. Clark, J.M. Waters and K.R. Whittle, J.C.S. Dalton, (1975) 2556.
- 285. M. Tsutsui, C.P. Hrung, D. Ostfeld, T.S. Srivastava, D.L. Cullen and E.F. Meyer, J.Amer.Chem.Soc., 97 (1975) 3952.
- 286. U. Croatto, L. Toniolo, A. Immirzi and G. Bombieri, J.Organometallic Chem., 102 (1975) C31.

146

- 287. N.W. Alcock, J.M. Brown, J.A. Conneely and D.H. Williamson, J.C.S. Chem.Comm., (1975) 792.
- 288. M.J. Nolte, E. Singleton and M. Laing, J.Amer. Chem. Soc., 97 (1975) 6396.
- 289. G. Schmid, G. Ritter and T. Debaerdemaeker, Chem. Ber., 108 (1975) 3008.
- 290. R. Colton, C.J. Commons and B.F. Hoskins, J.C.S. Chem. Comm., (1975) 363.
- 291. C.J. Commons and B.F. Hoskins, Aust.J. Chem., 28 (1975) 1663.
- 292. M. Laing and P.M. Treichel, J.C.S. Chem. Comm., (1975) 746.
- 293. R.G. Little, J.A. Ibers and J.E. Baldwin, J.Amer.Chem.Soc., 97 (1975) 7049.
- 294. J. Chatt, A.J.L. Pombeiro, R.L. Richards, G.H.D. Royston, K.W. Muir and R. Walker, J.C.S. Chem. Comm., (1975) 708.
- N.I. Kirillova, N.E. Kolobova, A.I. Gusev, A.B. Antonova, Y.T. Struchkov,
   K.N. Anisimov and O.M. Khitrova, *Zh.strukt.Khim.*, 15 (1974) 651.
- 296. J.M. Lisy, E.D. Dobrzynski, R.J. Angelici and J. Clardy, J.Amer.Chem.Soc., 97 (1975) 656.
- 297. N.J. Taylor, P.C. Chieh and A.J. Carty, J.C.S. Chem. Comm., (1975) 448.
- 298. M.R. Churchill and B.G. DeBoer, Inorg. Chem., 14 (1975) 2630.
- A. Immirzi, A. Musco, G. Carturan and U. Belluco, Inorg. Chim. Acta, 12 (1975) 123.
- 300. M. Nakajima, H. Moriyama, A. Kobayashi, T. Saito and Y. Sasaki, J.C.S. Chem. Comm., (1975) 80.
- L. Sacconi, C.A. Ghilardi, C. Mealli and F. Zanobini, Inorg.Chem., 14 (1975) 1380.
- 302. C.A. Ghilardi and L. Sacconi, Cryst. Struct. Comm., 4 (1975) 149.
- 303. C.A. Ghilardi, S. Midollini and L. Sacconi, Inorg. Chem., 14 (1975) 1790.
- 304. A. Orlandini and L. Sacconi, Cryst. Struct. Comm., 4 (1975) 157.
- 305. A. Orlandini and L. Sacconi, Cryst. Struct. Comm., 4 (1975) 107.
- 306. G.R. Clark, B.W. Skelton and T.N. Waters, Inorg. Chim. Acta, 12 (1975) 235.
- 307. P. Dapporto, S. Midollini and L. Sacconi, Inorg. Chem., 14 (1975) 1643.

- 308. P.J. Roberts, G. Ferguson and C.V. Senoff, J.Organometallic Chem., 94 (1975) C26.
- 309. J.T. Gill and S.J. Lippard, Inorg. Chem., 14 (1975) 751.

148

- G. Ciani, D. Giusto, M. Manassero and M. Sansoni, J.C.S. Dalton, (1975) 2156.
- 311. J. Kopf and J. Schmidt, 2. Naturforsch., 30b (1975) 149.
- 312. J.H. Enemark, R.D. Feltham, J. Riker-Nappier and K.F. Bizot, Inorg.Chem., 14 (1975) 624.
- 313. S.Z. Goldberg, C. Kubiak, C.D. Meyer and R. Eisenberg, Inorg. Chem.,14 (1975) 1650.
- 314. P.-T. Cheng and S.C. Nyburg, Inorg. Chem., 14 (1975) 327.
- 315. J.A. Kaduk and J.A. Ibers, Inorg. Chem., 14 (1975) 3070.
- 316. S. Bhaduri and G.M. Sheldrick, Acta Cryst., B31 (1975) 897.
- 317. G.R. Clark, J.M. Waters and K.R. Whittle, J.C.S. Dalton, (1975) 463.
- 318. W.R. Scheidt and M.E. Frisse, J.Amer. Chem. Soc., 97 (1975) 17.
- 319. F. Bottomley, J.C.S. Dalton, (1975) 2538.
- 319a. J.H. Meiners, C.J. Rix, J.C. Clardy and J.G. Verkade, Inorg. Chem., 14 (1975) 705.
- 320. T. Uchida, Y. Uchida, M. Hidai and T. Kodama, Acta Cryst., B31 (1975) 1197.
- 321. P.D. Cradwick, J. Chatt, R.H. Crabtree and R.L. Richards, J.C.S. Chem. Comm., (1975) 351.
- C. Parlog, D. Ciomartan, D. Sandulescu and D. Negoiu, *Rev. Roum. Chim.*, 19 (1974) 1303.
- 323. S. Krogsrud and J.A. Ibers, Inorg. Chem., 14 (1975) 2298.
- 324. S.D. Ittel and J.A. Ibers, Inorg. Chem., 14 (1975) 636.
- F.C. March, R. Mason and K.M. Thomas, J.Organometallic Chem., 96 (1975) C43.
- 326. A.P. Gaughan and J.A. Ibers, Inorg. Chem., 14 (1975) 352.
- 327. V.W. Day, T.A. George and S.D.A. Iske, J.Amer. Chem. Soc., 97 (1975) 4127.

- 328. W.S. Sheldrick, Acta Cryst., B31 (1975) 305.
- 329. A. Immirzi, A. Musco, P. Zambelli and G. Carturan, Inorg.Chim.Acta, 13 (1975) L13.
- G.R. Clark, B.W. Skelton and T.N. Waters, J.Organometallic Chem., 85 (1975) 375.
- 331. A.P. Gaughan, Z. Dori and J.A. Ibers, Inorg. Chem., 13 (1974) 1657.
- 332. D.J. Brauer, C. Krüger, P.J. Robert and Y.-H. Tsay, unpublished work cited in: E.A. Koerner von Gustorf, O. Jaenicke,
  O. Wolfbeis and C.R. Eady, Angew.Chem., 87 (1975) 300;
  Angew.Chem.Internat.Edit., 14 (1975) 278.
- 333. U. Müller and R. Boese, unpublished work cited in: G. Schmid, R. Boese and E. Welz, Chem.Ber., 108 (1975) 260.